The Role of Crystalline Iron Oxides in Methane Mitigation through Anaerobic Oxidation of Methane

2021 ◽  
Author(s):  
Weiwei Li ◽  
Chen Cai ◽  
Yarong Song ◽  
Gaofeng Ni ◽  
Xueqin Zhang ◽  
...  
2012 ◽  
Vol 9 (10) ◽  
pp. 3891-3899 ◽  
Author(s):  
A. Bannert ◽  
C. Bogen ◽  
J. Esperschütz ◽  
A. Koubová ◽  
F. Buegger ◽  
...  

Abstract. While the importance of anaerobic methane oxidation has been reported for marine ecosystems, the role of this process in soils is still questionable. Grasslands used as pastures for cattle overwintering show an increase in anaerobic soil micro-sites caused by animal treading and excrement deposition. Therefore, anaerobic potential methane oxidation activity of severely impacted soil from a cattle winter pasture was investigated in an incubation experiment under anaerobic conditions using 13C-labelled methane. We were able to detect a high microbial activity utilizing CH4 as nutrient source shown by the respiration of 13CO2. Measurements of possible terminal electron acceptors for anaerobic oxidation of methane were carried out. Soil sulfate concentrations were too low to explain the oxidation of the amount of methane added, but enough nitrate and iron(III) were detected. However, only nitrate was consumed during the experiment. 13C-PLFA analyses clearly showed the utilization of CH4 as nutrient source mainly by organisms harbouring 16:1ω7 PLFAs. These lipids were also found as most 13C-enriched fatty acids by Raghoebarsing et al. (2006) after addition of 13CH4 to an enrichment culture coupling denitrification of nitrate to anaerobic oxidation of methane. This might be an indication for anaerobic oxidation of methane by relatives of "Candidatus Methylomirabilis oxyfera" in the investigated grassland soil under the conditions of the incubation experiment.


2012 ◽  
Vol 9 (4) ◽  
pp. 4919-4945
Author(s):  
A. Bannert ◽  
C. Bogen ◽  
J. Esperschütz ◽  
A. Koubová ◽  
F. Buegger ◽  
...  

Abstract. While the importance of anaerobic methane oxidation has been reported for marine ecosystems, the role of this process in soils is still questionable. Grasslands used as pastures for cattle-overwintering show an increase in anaerobic soil micro-sites caused by animal treading and excrement deposition. Therefore anaerobic potential methane oxidation activity of severely impacted soil from a cattle winter pasture was investigated in an incubation experiment under anaerobic conditions using 13C-labeled methane. We were able to detect a high microbial activity utilizing CH4 as nutrient source shown by the respiration of 13CO2. Measurements of possible terminal electron acceptors for anaerobic oxidation of methane were carried out. Soil sulfate concentrations were too low to explain the oxidation of the amount of methane added, but enough nitrate and iron(III) were detected. However, only nitrate was consumed during the experiment. 13C-PLFA analyses clearly showed the utilization of CH4 as nutrient source mainly by organisms harbouring 16:1ω7 PLFAs. These lipids were found in Gram-negative microorganisms and anaerobes. The fact that these lipids are also typical for type I methanotrophs, known as aerobic methane oxidizers, might indicate a link between aerobic and anaerobic methane oxidation.


2016 ◽  
Vol 381 ◽  
pp. 54-66 ◽  
Author(s):  
Melesio Quijada ◽  
Armelle Riboulleau ◽  
Pierre Faure ◽  
Raymond Michels ◽  
Nicolas Tribovillard

2021 ◽  
Vol 9 (8) ◽  
pp. 875
Author(s):  
Hailin Yang ◽  
Shan Yu ◽  
Hailong Lu

Anaerobic oxidation of methane (AOM) is one of the major processes of oxidizing methane in marine sediments. Up to now, extensive studies about AOM coupled to sulfate reduction have been conducted because SO42− is the most abundant electron acceptor in seawater and shallow marine sediments. However, other terminal electron acceptors of AOM, such as NO3−, NO2−, Mn(IV), Fe(III), are more energetically favorable than SO42−. Iron oxides, part of the major components in deep marine sediments, might play a significant role as an electron acceptor in the AOM process, mainly below the sulfate–methane interface, mediated by physiologically related microorganisms. Iron-coupled AOM is possibly the dominant non-sulfate-dependent AOM process to consume methane in marine ecosystems. In this review, the conditions for iron-coupled AOM are summarized, and the forms of iron oxides as electron acceptors and the microbial mechanisms are discussed.


2020 ◽  
Vol 141 ◽  
pp. 107685 ◽  
Author(s):  
Lichao Fan ◽  
Michaela A. Dippold ◽  
Tida Ge ◽  
Jinshui Wu ◽  
Volker Thiel ◽  
...  

2021 ◽  
Vol 194 ◽  
pp. 116928
Author(s):  
Wen-Bo Nie ◽  
Jie Ding ◽  
Guo-Jun Xie ◽  
Xin Tan ◽  
Yang Lu ◽  
...  

Solid Earth ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 1541-1554 ◽  
Author(s):  
Christian Stranne ◽  
Matt O'Regan ◽  
Martin Jakobsson ◽  
Volker Brüchert ◽  
Marcelo Ketzer

Abstract. Assessments of future climate-warming-induced seafloor methane (CH4) release rarely include anaerobic oxidation of methane (AOM) within the sediments. Considering that more than 90 % of the CH4 produced in ocean sediments today is consumed by AOM, this may result in substantial overestimations of future seafloor CH4 release. Here, we integrate a fully coupled AOM module with a numerical hydrate model to investigate under what conditions rapid release of CH4 can bypass AOM and result in significant fluxes to the ocean and atmosphere. We run a number of different model simulations for different permeabilities and maximum AOM rates. In all simulations, a future climate warming scenario is simulated by imposing a linear seafloor temperature increase of 3 ∘C over the first 100 years. The results presented in this study should be seen as a first step towards understanding AOM dynamics in relation to climate change and hydrate dissociation. Although the model is somewhat poorly constrained, our results indicate that vertical CH4 migration through hydraulic fractures can result in low AOM efficiencies. Fracture flow is the predicted mode of methane transport under warming-induced dissociation of hydrates on upper continental slopes. Therefore, in a future climate warming scenario, AOM might not significantly reduce methane release from marine sediments.


Sign in / Sign up

Export Citation Format

Share Document