scholarly journals Sporadic P limitation constrains microbial growth and facilitates SOM accumulation in the stoichiometrically coupled, acclimating microbe–plant–soil model

2021 ◽  
pp. 108489
Author(s):  
Grace Pold ◽  
Bonnie L. Kwiatkowski ◽  
Edward B. Rastetter ◽  
Seeta A. Sistla
2020 ◽  
Author(s):  
Chris R Taylor ◽  
Ben Keane ◽  
Iain Hartley ◽  
Gareth Phoenix

<p>Terrestrial ecosystems absorb 30% of anthropogenic carbon dioxide (CO<sub>2</sub>) emissions, slowing its rising atmospheric concentration and substantially inhibiting climate change. This uptake is believed to be due to elevated CO<sub>2</sub> (eCO<sub>2</sub>) stimulating plant photosynthesis and growth, thus increasing carbon (C) storage in plants and soil organic matter. However, nitrogen (N) limitation can reduce ecosystem C uptake capacity under eCO<sub>2</sub> by as much as 50%. Phosphorus (P) limitation in ecosystems is almost as common as N-limitation and is increasing due to ongoing deposition of N from anthropogenic activities. Despite this, we do not know how P-limited ecosystems will respond to eCO<sub>2</sub>, constituting a major gap in our understanding of how large areas of the biosphere will impact atmospheric CO<sub>2</sub> over the coming decades.</p><p>In the first study conducted into the effect of eCO<sub>2</sub> on P-limited ecosystems with manipulated nutrient availability, the Phosphorus Limitation And ecosystem responses to Carbon dioxide Enrichment project (PLACE), investigates the effects of eCO<sub>2</sub> on C cycling in grasslands, which are a critical global C store. Turf mesocosms from P-limited acidic and limestone grasslands, where N and P inputs have been manipulated for 20 years (control, low N (3.5 g m<sup>-2</sup> y<sup>-1</sup>), high N (14 g m<sup>-2</sup> y<sup>-1</sup>), and P (3.5 g m<sup>-2</sup> y<sup>-1</sup>)), have been exposed to either ambient or eCO<sub>2</sub> (600 ppm) in a miniFACE (mini Free Air Carbon Enrichment) system. Long-term P addition has alleviated P limitation while N additions have exacerbated it. The two contrasting grasslands contain different amounts of organic versus mineral P in their soils and, thus, plants may have to use contrasting strategies to acquire the additional P they need to increase growth rates under elevated CO<sub>2</sub>.</p><p>We present data from the first two growing seasons, including above and below ground productivity, and C, N and P cycling through plant, soil and microbial pools. Aboveground harvest data from the second year have shown eCO<sub>2</sub> has only increased biomass production in the limestone grassland (by 17%; p< 0.0001), and not in the acid grassland. There was also a significant effect of nutrient treatment (p< 0.001) with biomass increasing under P and HN, indicating some co-NP limitation. Stable isotope tracing, using the fumigation CO<sub>2</sub> signal has shown the fate of newly assimilated C and its contribution to gaseous C flux to the atmosphere in the form of methane (CH<sub>4</sub>) and respired CO<sub>2</sub>.  In summary, our first two years of eCO<sub>2</sub> treatment suggests that productivity of limestone and acidic grassland respond differently and that these responses depend on nutrient availability, indicating the complexity of predicting P-limited ecosystem responses as atmospheric CO<sub>2 </sub>continues to rise.</p>


2014 ◽  
Vol 84 (1) ◽  
pp. 151-170 ◽  
Author(s):  
Seeta A. Sistla ◽  
Edward B. Rastetter ◽  
Joshua P. Schimel
Keyword(s):  

2020 ◽  
Vol 13 (2) ◽  
pp. 783-803 ◽  
Author(s):  
Lin Yu ◽  
Bernhard Ahrens ◽  
Thomas Wutzler ◽  
Marion Schrumpf ◽  
Sönke Zaehle

Abstract. Plant–soil interactions, such as the coupling of plants' below-ground biomass allocation with soil organic matter (SOM) decomposition, nutrient release and plant uptake, are essential to understand the response of carbon (C) cycling to global changes. However, these processes are poorly represented in the current terrestrial biosphere models owing to the simple first-order approach of SOM cycling and the ignorance of variations within a soil profile. While the emerging microbially explicit soil organic C models can better describe C formation and turnover, at present, they lack a full coupling to the nitrogen (N) and phosphorus (P) cycles with the soil profile. Here we present a new SOM model – the Jena Soil Model (JSM) – which is microbially explicit, vertically resolved and integrated with the N and P cycles. To account for the effects of nutrient availability and litter quality on decomposition, JSM includes the representation of enzyme allocation to different depolymerisation sources based on the microbial adaptation approach as well as of nutrient acquisition competition based on the equilibrium chemistry approximation approach. Herein, we present the model structure and basic features of model performance in a beech forest in Germany. The model reproduced the main SOM stocks and microbial biomass as well as their vertical patterns in the soil profile. We further tested the sensitivity of the model to parameterisation and showed that JSM is generally sensitive to changes in microbial stoichiometry and processes.


Author(s):  
Marina Vasilenko ◽  
Marina Vasilenko ◽  
Elena Goncharova ◽  
Elena Goncharova ◽  
Yury Rubanov ◽  
...  

The surfaces of building materials of hydrotechnical constructions undergo the process of algae biofouling. The degree of damage depends on the environmental factors that are affect-ed by the level of anthropogenic load areas. Modeling the biofouling process of concrete with algae under laboratory conditions has allowed determining their impact on the building ma-terial, accompanied by changes in chemical and mineralogical composition of the surface of products. The microscopic examination of sample’s surfaces and evaluation of the effective-ness of various ions leaching from building materials shows the results of "algal attack" relat-ed to the acceleration of biodegradation of materials under the influence of aggressive meta-bolic products, mechanical action neoplasms, creating optimal conditions for the development of subsequent aerobic microbial decomposers. To clarify the nature of chemical processes in the system “algocenosis – concrete” the changes of chemical and phase (mineralogical) com-position of the surface layer of concrete sample were studied. The effect that algae produce on hydraulic engineering constructions is due to the fact that these organisms, belonging to phototrophs and standing at the beginning of the food chain, initiate new microbial growth.


Sign in / Sign up

Export Citation Format

Share Document