Identification of dynamic soil properties through shaking table tests on a large saturated sand specimen in a laminar shear box

2016 ◽  
Vol 83 ◽  
pp. 59-68 ◽  
Author(s):  
Chi-Chin Tsai ◽  
Wei-Chun Lin ◽  
Jiunn-Shyang Chiou
2021 ◽  
Vol 11 (4) ◽  
pp. 1875
Author(s):  
Yong Jin ◽  
Hoyeon Kim ◽  
Daehyeon Kim ◽  
Yonghee Lee ◽  
Haksung Kim

In order to verify the reliability of numerical analysis, a series of 1 g shaking table tests for flat ground and slope were conducted using a laminar shear box subjected to different seismic waves. Firstly, numerical analyses, using the DEEPSOIL and ABAQUS software, were done to compare the results of flat ground experiments. After that, finite element analyses with ABAQUS were conducted to compare the results of slope experiments. For numerical analyses, considering the influence of the boundary, the concept of adjusted elastic modulus was proposed to improve the simulation results. Based on the analyses, it is found that in terms of acceleration-time history and spectral acceleration, the numerical analysis results are in good agreement with the experiment results. This implies that numerical analysis can capture the dynamic behavior of soil under 1 g shaking table test conditions.


2018 ◽  
Vol 4 (6) ◽  
pp. 1326 ◽  
Author(s):  
Reza Alaie ◽  
Reza Jamshidi Chenari

Correct evaluation of shear modulus and damping characteristics in soils under dynamic loading is one of the most important topics in geotechnical engineering. Shaking tables are used for physical modelling in earthquake geotechnical engineering and is key to the fundamental understanding and practical application of soil behaviour. The shaking table test is realistic and clear when the response of geotechnical problems such as liquefaction, post-earthquake settlement, foundation response and soil-structure interaction and lateral earth pressure problems, during an earthquake is discussed. This paper describes various components of the uniaxial shaking table at university of Guilan, Iran. Also, the construction of the laminar shear box is described. A laminar shear box is a flexible container that can be placed on a shaking table to simulate vertical shear-wave propagation during earthquakes through a soil layer of finite thickness. Typical model tests on sandy soil conducted on the shaking table and the results obtained are also presented. Appropriate evaluation of shear modulus and damping characteristics of soils subjected to dynamic loading is key to accurate seismic response analysis and soil modelling programs. The estimated modulus reduction and damping ratio were compared to with Seed and Idriss’s benchmark curves.


2020 ◽  
Vol 10 (13) ◽  
pp. 4642
Author(s):  
Hoyeon Kim ◽  
Daehyeon Kim ◽  
Yonghee Lee ◽  
Haksung Kim

In order to evaluate the effects of soil box boundary conditions on the dynamic soil behavior, the Rigid Box (RB) and the Laminar Shear box (LSB) were constructed and 1 g shaking table tests were carried out for various boundary conditions. The boundary effects of the RB and the LSB were compared. To reduce the boundary effects of the RB, sponges, 5 cm, 10 cm, and 15 cm in thickness, were attached to the two end sides of the RB. A model soil was constructed on flat ground, and the acceleration and amplification occurring in the center of the soil were analyzed by spectrum and peak ground acceleration. Compared with the RB, the center and wall accelerations of LSB were very close to each other. This implies that the LSB can better simulate the behavior of the infinite half space than the RB.


2019 ◽  
Vol 92 ◽  
pp. 17002
Author(s):  
Zitao Zhang ◽  
Jianzhang Xiao ◽  
Yingqi Wei ◽  
Hong Cai ◽  
Jianhui Liang ◽  
...  

Similar to fully saturated sand, the partially saturated sand can also liquefy under certain conditions during earthquakes. This study aims to characterize the seismic behaviour of partially saturated sand. Centrifuge shaking table tests were performed using the IWHR horizontal-vertical centrifuge shaker. The experimental results indicate that the liquefaction resistance of the partially saturated sand increases with decreasing the degree of saturation and with increasing the initial effective stress right before shaking. The boundary between the liquefied and un-liquefied sand becomes deeper and deeper during shaking.


2013 ◽  
Vol 59 (4) ◽  
pp. 509-521 ◽  
Author(s):  
A. Sawicki ◽  
W. Świdziński

AbstractThis paper presents numerical simulations of the behavior of a sandy layer subjected to a cyclic horizontal acceleration in shaking table tests, with a particular attention focused on the settlements of a dry sand layer, and on the liquefaction of saturated sand. A compaction/liquefaction model (C/L) is applied to these simulations. The influence of specific parameters of the model on the compaction and liquefaction of a sandy layer is shown and discussed. The results of simulations are compared with selected experimental data.


Sign in / Sign up

Export Citation Format

Share Document