Effect of non-plastic silt on liquefaction susceptibility of marine sand by transparent laminar shear box in shaking table

2020 ◽  
Vol 14 (5) ◽  
pp. 514-526
Author(s):  
Ali Ghorbani ◽  
Amin Eslami ◽  
Masoumeh Nezhad Moghadam
2018 ◽  
Vol 4 (6) ◽  
pp. 1326 ◽  
Author(s):  
Reza Alaie ◽  
Reza Jamshidi Chenari

Correct evaluation of shear modulus and damping characteristics in soils under dynamic loading is one of the most important topics in geotechnical engineering. Shaking tables are used for physical modelling in earthquake geotechnical engineering and is key to the fundamental understanding and practical application of soil behaviour. The shaking table test is realistic and clear when the response of geotechnical problems such as liquefaction, post-earthquake settlement, foundation response and soil-structure interaction and lateral earth pressure problems, during an earthquake is discussed. This paper describes various components of the uniaxial shaking table at university of Guilan, Iran. Also, the construction of the laminar shear box is described. A laminar shear box is a flexible container that can be placed on a shaking table to simulate vertical shear-wave propagation during earthquakes through a soil layer of finite thickness. Typical model tests on sandy soil conducted on the shaking table and the results obtained are also presented. Appropriate evaluation of shear modulus and damping characteristics of soils subjected to dynamic loading is key to accurate seismic response analysis and soil modelling programs. The estimated modulus reduction and damping ratio were compared to with Seed and Idriss’s benchmark curves.


2020 ◽  
Vol 10 (13) ◽  
pp. 4642
Author(s):  
Hoyeon Kim ◽  
Daehyeon Kim ◽  
Yonghee Lee ◽  
Haksung Kim

In order to evaluate the effects of soil box boundary conditions on the dynamic soil behavior, the Rigid Box (RB) and the Laminar Shear box (LSB) were constructed and 1 g shaking table tests were carried out for various boundary conditions. The boundary effects of the RB and the LSB were compared. To reduce the boundary effects of the RB, sponges, 5 cm, 10 cm, and 15 cm in thickness, were attached to the two end sides of the RB. A model soil was constructed on flat ground, and the acceleration and amplification occurring in the center of the soil were analyzed by spectrum and peak ground acceleration. Compared with the RB, the center and wall accelerations of LSB were very close to each other. This implies that the LSB can better simulate the behavior of the infinite half space than the RB.


Author(s):  
Akihiko UCHIDA ◽  
Junji HAMADA ◽  
Tomio TSUCHIYA ◽  
Kiyoshi YAMASHITA ◽  
Masaaki KAKURAI

2021 ◽  
Vol 11 (4) ◽  
pp. 1875
Author(s):  
Yong Jin ◽  
Hoyeon Kim ◽  
Daehyeon Kim ◽  
Yonghee Lee ◽  
Haksung Kim

In order to verify the reliability of numerical analysis, a series of 1 g shaking table tests for flat ground and slope were conducted using a laminar shear box subjected to different seismic waves. Firstly, numerical analyses, using the DEEPSOIL and ABAQUS software, were done to compare the results of flat ground experiments. After that, finite element analyses with ABAQUS were conducted to compare the results of slope experiments. For numerical analyses, considering the influence of the boundary, the concept of adjusted elastic modulus was proposed to improve the simulation results. Based on the analyses, it is found that in terms of acceleration-time history and spectral acceleration, the numerical analysis results are in good agreement with the experiment results. This implies that numerical analysis can capture the dynamic behavior of soil under 1 g shaking table test conditions.


2001 ◽  
Vol 1 (2) ◽  
pp. 43-51
Author(s):  
Tomio Tsuchiya ◽  
Masaaki Kakurai ◽  
Kiyoshi Yamashita ◽  
Junji Hamada

2012 ◽  
Vol 588-589 ◽  
pp. 1889-1893
Author(s):  
Hai Feng Sun ◽  
Li Ping Jing ◽  
Qing Hai Wei ◽  
Xian Chun Meng

Shaking table test is an important method to study on the problem of the soil-structure dynamic interaction. The property of the soil container directly affects the accuracy of the result. A laminar shear container was designed for shaking table test. And a shaking table test on soil-underground structure dynamic interaction which structure lay in clay was conducted. The results of the test show that the container eliminated the boundary effect when the dynamic load was applied in only one horizontal direction. Meanwhile, the stiffness of the soil container could be changed according to the change of the model soil, which is applicable to decrease the boundary effect.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Jianbo Dai ◽  
Li Wang ◽  
Chengtao Hu ◽  
Guidi Zhang

The seismic response of buried oil and gas pipelines is mainly influenced by the site soil. In this paper, a bidirectional laminar shear continuum model box is developed for the site response of buried oil and gas pipelines under transverse multipoint seismic excitation. By comparing the acceleration response of the soil and pipeline, monitoring the soil displacement, and analyzing the acceleration coefficient and Fourier spectrum, the seismic response characteristics of the soil at different excitation modes and peak seismic acceleration and its laws were investigated. The test results show that the soil under transverse excitation undergoes the process of soil compaction to nonlinear characteristics and finally soil damage, and the course of multipoint excitation develops faster and causes more serious soil damage. The peak Fourier spectrum of both the pipe and the soil appears at the frequency of 4–6 Hz, and in general, the acceleration of the pipe is greater than that of the soil; the difference between the two gradually decreases with the increase of loading level. Compared with the uniform excitation, the increase in the loading level during the lateral multipoint excitation will result in a decrease of the consistency of the acceleration time history curve at each measurement point and a decrease of the peak of the spectrum. The effect of laminar shear between soil bodies becomes more obvious with the increase of acceleration peaks on the shaking table. It is also found out that the excitation method has little effect on the displacement time history curve, but the multipoint excitation may cause fluctuations in the displacement time history curve.


Author(s):  
Weidan Shi ◽  
Weien Chen ◽  
Youqin Lin ◽  
Yingxiong Wu

Sign in / Sign up

Export Citation Format

Share Document