Seismic performance of a novel partial precast RC shear wall with reserved cast-in-place base and wall edges

2022 ◽  
Vol 152 ◽  
pp. 107038
Author(s):  
Suiwen Wu ◽  
Huaqiang Li ◽  
Xu Wang ◽  
Ran Li ◽  
Chunyu Tian ◽  
...  
2009 ◽  
Vol 18 (7) ◽  
pp. 807-822 ◽  
Author(s):  
Hee-San Chung ◽  
Byoung-Wook Moon ◽  
Sung-Kyung Lee ◽  
Ji-Hun Park ◽  
Kyung-Won Min

2019 ◽  
Vol 214 ◽  
pp. 539-556 ◽  
Author(s):  
Ximei Zhai ◽  
Xiansong Zhang ◽  
Can Cao ◽  
Wenbo Hu

2012 ◽  
Vol 446-449 ◽  
pp. 1006-1013 ◽  
Author(s):  
Wan Lin Cao ◽  
Hong Ying Dong ◽  
Jian Wei Zhang

RC shear wall with STRC (steel tube-reinforced concrete) columns and embedded steel plate has been proposed and used in the project of an International Conference Center. In order to ascertain the seismic performance of this kind of composite shear walls with different openings in the practical engineering, four 1/7 scale specimens with shear span ration 2.0 were tested under low-frequency cyclic loading. The load-carrying capacity, ductility, stiffness and its attenuation, hysteretic property, energy dissipation capacity and failure mode of the specimens were analyzed. The effect of the embedded steel plate and the concealed steel trusses on the seismic performance of the walls was studied. The results show that the ductility and load-carrying capacity of RC shear wall are improved greatly by setting the embedded steel plate or concealed steel trusses in the wall; The embedded steel plate and the concrete work very well through the stud connectors welded on the steel plate and the tie bars inserted in the walls; The STRC columns have the advantage of higher load-carrying capacity, not easy to crack and better ductility; The new composite shear wall has good seismic performance and important practical value. It is suitable for large and complex application of high-rise buildings in the seismic regions.


2011 ◽  
Vol 368-373 ◽  
pp. 1943-1948 ◽  
Author(s):  
Liang Chen ◽  
Zhong Fan Chen

CTSRC structure is a new composite structural system for residential buildings and it consists of walls and floors which are made of the prefabricated steel skeleton and the infill of concrete. Four pieces of CTSRC shear wall specimens and one piece of RC shear wall specimen are tested under low cyclic lateral loads to study the final failure modes and analyze its structural seismic performance. It shows that the CTSRC shear wall structure possess adequate bearing capacity, fine seismic performance and ductility. CTSRC shear walls are better than RC shear walls in the seismic behavior, and it could replace traditional shear walls structure applying to practical engineering. Inserting ring used for connecting profile steel can transfer stress well and it is recognized as a reasonable construction measure.


2003 ◽  
Vol 6 (1) ◽  
pp. 1-13 ◽  
Author(s):  
W. L. Cao ◽  
S. D. Xue ◽  
J. W. Zhang

Reinforced concrete shear walls play an important role in improving seismic performance of building structures. In this paper, a new type of RC shear wall with concealed bracing is proposed and investigated. Four 1:3 scale medium-height specimens were designed and a detailed experimental investigation carried out. The load-carrying capacity, stiffness, ductility, hysteretic behavior and energy dissipation of the shear wall are discussed. The failure mechanism was revealed by the experiments. It is found that in comparison with a normal shear wall, the seismic performance of a shear wall can be significantly improved by adding concealed bracing within the wall panel. Finally, a mechanical model of the shear wall is proposed and formulae for calculating load-carrying capacity developed. It is shown that the theoretical results agree well with those from experiments.


Sign in / Sign up

Export Citation Format

Share Document