Experimental Study on Seismic Behavior of Meshwork Cold-Formed Thin-Wall Steel RC Shear Wall

2011 ◽  
Vol 368-373 ◽  
pp. 1943-1948 ◽  
Author(s):  
Liang Chen ◽  
Zhong Fan Chen

CTSRC structure is a new composite structural system for residential buildings and it consists of walls and floors which are made of the prefabricated steel skeleton and the infill of concrete. Four pieces of CTSRC shear wall specimens and one piece of RC shear wall specimen are tested under low cyclic lateral loads to study the final failure modes and analyze its structural seismic performance. It shows that the CTSRC shear wall structure possess adequate bearing capacity, fine seismic performance and ductility. CTSRC shear walls are better than RC shear walls in the seismic behavior, and it could replace traditional shear walls structure applying to practical engineering. Inserting ring used for connecting profile steel can transfer stress well and it is recognized as a reasonable construction measure.

2012 ◽  
Vol 446-449 ◽  
pp. 672-678 ◽  
Author(s):  
Wei Jing Zhang ◽  
Yi Nan Du ◽  
Jia Ru Qian

As a new type of structural system, the cast-in-situ reinforced concrete grillage shear wall system has functions of formwork, strength and heat preservation at the same time. It is suitable for residential buildings in seismic and non-seismic areas. The results of quasi-static tests on 20 specimens of small and large grid size grillage shear walls with different shear span ratios show that: both of small and large grid size grillage shear walls have excellent seismic performance; shear or bending deformation of horizontal and vertical limbs dissipate seismic energy so the elastic-plastic deformability of grillage shear walls meet the requirements of shear wall structure under strong earthquakes; the bearing capacity of grillage shear wall was calculated with formulas used for solid RC shear walls. The equivalent thickness of grillage shear wall equalized as solid shear wall is determined by elastic finite element analysis.


2013 ◽  
Vol 353-356 ◽  
pp. 1990-1999
Author(s):  
Yi Sheng Su ◽  
Er Cong Meng ◽  
Zu Lin Xiao ◽  
Yun Dong Pi ◽  
Yi Bin Yang

In order to discuss the effect of different concrete strength on the seismic behavior of the L-shape steel reinforced concrete (SRC) short-pier shear wall , this article analyze three L-shape steel reinforced concrete short-pier shear walls of different concrete strength with the numerical simulation software ABAQUS, revealing the effects of concrete strength on the walls seismic behavior. The results of the study show that the concrete strength obviously influence the seismic performance. With the concrete strength grade rise, the bearing capacity of the shear wall becomes large, the ductility becomes low, the pinch shrinkage effect of the hysteresis loop becomes more obvious.


2014 ◽  
Vol 919-921 ◽  
pp. 1812-1816 ◽  
Author(s):  
Quan Dong Xiao ◽  
Zheng Xing Guo

To study the seismic behavior of Double-Wall Precast Concrete (DWPC) shear wall, three full scale specimens are tested and compared under low-cyclic reversed loading, including two DWPC shear walls and one normal Cast-In-Situ (CIS) shear wall. By observing their experimental phenomena and failure modes, contrasting their displacement ductility coefficients, hysteretic curves, skeleton curves and energy dissipation capacity, the seismic behavior were synthetically evaluated on aspects of strength, stiffness, ductility and energy dissipation. Compared with CIS specimen, DWPC specimens have higher initial stiffness, increased cracking loads by 43% to 47%, and the ultimate loads increased by 22% to 23%. The displacement ductility ratios also meet the ductility requirements with value of 5. The hysteretic curves of three specimens are plump, and the trend of skeleton curves is basically the same. The DWPC specimens demonstrated a good energy dissipation capacity. All the specimens had shown favorable seismic performance.


2012 ◽  
Vol 166-169 ◽  
pp. 1290-1294
Author(s):  
Xiao Yu Liu ◽  
Hui Hong Dong

The high-rise concrete residential market has been a gradually urban mainstream in recent years, and frame-shear wall structure is more used for high-rise residential structures now. This kind of structure has the advantage that the combination of frame and shear wall make the space free and flexible, and therefore the whole structure has considerable rigidity. The structure can not only satisfy the needs for people living in comfortable, but also has good dynamic and static load bearing capacity. This paper analyzed the mechanics characteristics of the structure and summarized the two kinds of main failure modes of shear wall and frame structure in earthquake. On this basis, the main principles are put forward to improve the seismic behavior of the shear wall. And further some of specific measures and suggestions which can improve the seismic performance for the frame-shear structure are introduced.


2016 ◽  
Vol 10 (1) ◽  
pp. 334-348
Author(s):  
Cui Ji-Dong ◽  
Han Xiao-Lei ◽  
Yang Wan ◽  
Li Wei-Chen

In order to establish the relation between damage state and member deformation of the L-section RC shear wall, 216 FE models designed to meet the requirements of the Chinese codes were set up. The analysis fully considers the variation of parameters including axial load ratio and shear span ratio etc. According to the results, criteria of classifying failure modes of L-section RC shear walls are proposed. Failure modes are determined by shear-span ratio, moment-shear ratio and end columns' reinforcement ratio. Deformation limits corresponding to respective performance levels are put forward. Fitted formulas of calculating the limits are also presented. It is shown that the categorization criteria are reliably accurate in predicting failure modes. Deformation limits of a given L-section RC shear wall could be determined via axial load ratio and moment-shear ratio. The fitted formulas possess a satisfactory correlation with numerical results.


2012 ◽  
Vol 446-449 ◽  
pp. 1006-1013 ◽  
Author(s):  
Wan Lin Cao ◽  
Hong Ying Dong ◽  
Jian Wei Zhang

RC shear wall with STRC (steel tube-reinforced concrete) columns and embedded steel plate has been proposed and used in the project of an International Conference Center. In order to ascertain the seismic performance of this kind of composite shear walls with different openings in the practical engineering, four 1/7 scale specimens with shear span ration 2.0 were tested under low-frequency cyclic loading. The load-carrying capacity, ductility, stiffness and its attenuation, hysteretic property, energy dissipation capacity and failure mode of the specimens were analyzed. The effect of the embedded steel plate and the concealed steel trusses on the seismic performance of the walls was studied. The results show that the ductility and load-carrying capacity of RC shear wall are improved greatly by setting the embedded steel plate or concealed steel trusses in the wall; The embedded steel plate and the concrete work very well through the stud connectors welded on the steel plate and the tie bars inserted in the walls; The STRC columns have the advantage of higher load-carrying capacity, not easy to crack and better ductility; The new composite shear wall has good seismic performance and important practical value. It is suitable for large and complex application of high-rise buildings in the seismic regions.


2003 ◽  
Vol 6 (1) ◽  
pp. 1-13 ◽  
Author(s):  
W. L. Cao ◽  
S. D. Xue ◽  
J. W. Zhang

Reinforced concrete shear walls play an important role in improving seismic performance of building structures. In this paper, a new type of RC shear wall with concealed bracing is proposed and investigated. Four 1:3 scale medium-height specimens were designed and a detailed experimental investigation carried out. The load-carrying capacity, stiffness, ductility, hysteretic behavior and energy dissipation of the shear wall are discussed. The failure mechanism was revealed by the experiments. It is found that in comparison with a normal shear wall, the seismic performance of a shear wall can be significantly improved by adding concealed bracing within the wall panel. Finally, a mechanical model of the shear wall is proposed and formulae for calculating load-carrying capacity developed. It is shown that the theoretical results agree well with those from experiments.


2021 ◽  
Vol 13 (2) ◽  
pp. 509
Author(s):  
Su-Yong Kim ◽  
Uijin Cho ◽  
Joo-Hong Chung ◽  
Baek-Il Bae ◽  
Chang-Sik Choi

A study was conducted for the flexural retrofit of an old apartment house composed of a reinforced concrete (RC) shear wall structure. For the shear wall, a vertical retrofit was performed to both ends of the wall targeting the slender wall to improve the flexural performance. The retrofit materials were steel plate, epoxy, and non-shrink grout, and they were connected to the existing shear wall using post-installed chemical anchors. The concrete at the wall ends was broken and retrofitted as much as necessary to maintain the shear wall’s length. The points to be noted are the fracture of the welded part of the flexural retrofit and the chemical anchor’s pulling. After the real scale specimen was fabricated by simulating the existing shear wall, the retrofit effect was experimentally verified by breaking the wall ends, retrofitting the ends, and applying repeated cyclic lateral loads. A total of three specimens were fabricated and retrofitted using steel plates and steel tubes. Since this experiment evaluated the flexural performance, the experiment was performed with a cantilever setting. The flexural retrofit effect using steel was analyzed through the load–displacement relationship, stiffness degradation, and energy dissipation, and through this, the bond of the retrofit and the behavior of the wall were verified.


Sign in / Sign up

Export Citation Format

Share Document