Performance analysis of an ejector-boosted solar-assisted flash tank vapor injection cycle for ASHP applications

Solar Energy ◽  
2021 ◽  
Vol 224 ◽  
pp. 607-616
Author(s):  
Xiaolong Lv ◽  
Mengqi Yu ◽  
Jianlin Yu
Author(s):  
Jielin Luo ◽  
Qin Wang ◽  
Zhen Zhao ◽  
Kaiyin Yang ◽  
Guangming Chen ◽  
...  

Abstract Considering the issues of environmental pollution and energy efficiency, heat pumps are gradually replacing traditional coal combustion for heating at low ambient temperatures. In this paper, eco-friendly CO2/HCs with large temperature glides are applied in a single-stage recuperative heat pump water heater. Its heating performance is theoretically investigated under the working condition of producing circulating hot water in typical winter of northern China, with medium temperature difference between supply/return water and large temperature difference between air inlet and water inlet. Due to its simple structure, low initial investment and high efficiency, its potential for producing circulating hot water is demonstrated. Exergy analyses are conducted to reveal the significant influence of the exergy losses of heat exchanger on system performance. For specified CO2/HC, optimal COP is obtained through global optimization of cycle pressures and mixture concentration. The heating performances of different CO2/HCs are compared, among which CO2/R600 and CO2/R600a behave better. Meanwhile, a typical vapor-injection cycle is used to demonstrate priorities on the heating performance of this recuperative cycle, in which the COP of recuperative cycle using CO2/R600 is more than 3.4% higher than that of the vapor-injection cycle. The results obtained in this paper provide a simple and efficient solution for producing circulating hot water at low ambient temperatures.


2020 ◽  
Vol 32 (12) ◽  
pp. 4259
Author(s):  
Win-Jet Luo ◽  
Jin-Chang Lai ◽  
Ming-Chu Hsieh ◽  
I-Hsing Huang

Author(s):  
Tao Cao ◽  
Jiazhen Ling ◽  
Yunho Hwang ◽  
Reinhard Radermacher

An energy efficient two-stage heat pump clothes dryer (HPCD) was successfully developed. This new dryer utilizes three advanced technologies: vapor injection cycle, compact heat exchanger and brushless direct current (BLDC) fan motor. An in-house heat exchanger design tool – CoilDesigner was utilized to design and optimize the evaporator and condenser in the vapor injection cycle. One electric clothes dryer (CD) from U.S. market was selected as the baseline product, and one hybrid HPCD from European market was selected as the best state-of-the-art commercial product in terms of energy efficiency. These two commercial products and the constructed two-stage HPCD prototype were tested according to the Department of Energy (DOE) dryer test standards. Experimental evaluation revealed that the two-stage HPCD achieved 59% energy savings and improved energy factor (EF) by 143% as compared to the electric dryer. It also achieved 25% energy savings and improved EF by 33% as compared to the hybrid HPCD. This implied that the two-stage HPCD could save energy up to 42 TW·h annually if this technology is fully deployed to replace all U.S. electric CDs. Cost analysis indicates that the payback period of the two-stage HPCD is only 2.2 years as compared to the electric dryer with bottom cabinet. Therefore, the two-stage HPCD is an economically competitive greener option.


2021 ◽  
Vol 1865 (3) ◽  
pp. 032038
Author(s):  
Changhao Piao ◽  
Ziyang Liu ◽  
Weiwei Wang ◽  
Cunxue Wu ◽  
Rongdi Yuan

Sign in / Sign up

Export Citation Format

Share Document