Substrate evaporation induced neck-shape evolution of a liquid/solid interface

2007 ◽  
Vol 9 (5) ◽  
pp. 338-343 ◽  
Author(s):  
Shmuel Barzilai ◽  
Michael Aizenshtein ◽  
Marina Lomberg ◽  
Natalie Froumin ◽  
Nachum Frage
Author(s):  
J.A. Panitz

The first few atomic layers of a solid can form a barrier between its interior and an often hostile environment. Although adsorption at the vacuum-solid interface has been studied in great detail, little is known about adsorption at the liquid-solid interface. Adsorption at a liquid-solid interface is of intrinsic interest, and is of technological importance because it provides a way to coat a surface with monolayer or multilayer structures. A pinhole free monolayer (with a reasonable dielectric constant) could lead to the development of nanoscale capacitors with unique characteristics and lithographic resists that surpass the resolution of their conventional counterparts. Chemically selective adsorption is of particular interest because it can be used to passivate a surface from external modification or change the wear and the lubrication properties of a surface to reflect new and useful properties. Immunochemical adsorption could be used to fabricate novel molecular electronic devices or to construct small, “smart”, unobtrusive sensors with the potential to detect a wide variety of preselected species at the molecular level. These might include a particular carcinogen in the environment, a specific type of explosive, a chemical agent, a virus, or even a tumor in the human body.


1987 ◽  
Vol 48 (3) ◽  
pp. 389-405 ◽  
Author(s):  
P. Nozières ◽  
M. Uwaha

2017 ◽  
Author(s):  
Ashly Senske ◽  
◽  
Claire Marvet ◽  
Sultan Akbar ◽  
Silishia Wong ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mingzi Sun ◽  
Qiuyang Lu ◽  
Zhong Lin Wang ◽  
Bolong Huang

AbstractThe charge transfer phenomenon of contact electrification even exists in the liquid–solid interface by a tiny droplet on the solid surface. In this work, we have investigated the contact electrification mechanism at the liquid–solid interface from the electronic structures at the atomic level. The electronic structures display stronger modulations by the outmost shell charge transfer via surface electrostatic charge perturbation than the inter-bonding-orbital charge transfer at the liquid–solid interface, supporting more factors being involved in charge transfer via contact electrification. Meanwhile, we introduce the electrochemical cell model to quantify the charge transfer based on the pinning factor to linearly correlate the charge transfer and the electronic structures. The pinning factor exhibits a more direct visualization of the charge transfer at the liquid–solid interface. This work supplies critical guidance for describing, quantifying, and modulating the contact electrification induced charge transfer systems in triboelectric nanogenerators in future works.


Sign in / Sign up

Export Citation Format

Share Document