State-of-the-art review on water-based nanofluids for low temperature solar thermal collector application

2021 ◽  
Vol 230 ◽  
pp. 111220
Author(s):  
Fazlay Rubbi ◽  
Likhan Das ◽  
Khairul Habib ◽  
Navid Aslfattahi ◽  
R. Saidur ◽  
...  
2020 ◽  
Vol 10 (10) ◽  
pp. 59-67
Author(s):  
Victor N. ANTIPOV ◽  
◽  
Andrey D. GROZOV ◽  
Anna V. IVANOVA ◽  
◽  
...  

The overall dimensions and mass of wind power units with capacities larger than 10 MW can be improved and their cost can be decreased by developing and constructing superconducting synchronous generators. The article analyzes foreign conceptual designs of superconducting synchronous generators based on different principles: with the use of high- and low-temperature superconductivity, fully superconducting or only with a superconducting excitation system, and with the use of different materials (MgB2, Bi2223, YBCO). A high cost of superconducting materials is the main factor impeding commercial application of superconducting generators. In view of the state of the art in the technology for manufacturing superconductors and their cost, a conclusion is drawn, according to which a synchronous gearless superconducting wind generator with a capacity of 10 MW with the field winding made of a high-temperature superconducting material (MgB2, Bi-2223 or YBCO) with the «ferromagnetic stator — ferromagnetic rotor» topology, with the stator diameter equal to 7—9 m, and with the number of poles equal to 32—40 has prospects for its practical use in the nearest future.


Author(s):  
Julia Maria Massareli Costa ◽  
Guilherme Viana ◽  
Vinicius Cruz ◽  
Felipe Boragina da silva ◽  
Ana Beatriz Valentin ◽  
...  

Author(s):  
David García-Menéndez ◽  
Juan Carlos Ríos-Fernández ◽  
Ana María Blanco-Marigorta ◽  
María José Suárez-López

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4171
Author(s):  
Rabia Ikram ◽  
Badrul Mohamed Jan ◽  
Akhmal Sidek ◽  
George Kenanakis

An important aspect of hydrocarbon drilling is the usage of drilling fluids, which remove drill cuttings and stabilize the wellbore to provide better filtration. To stabilize these properties, several additives are used in drilling fluids that provide satisfactory rheological and filtration properties. However, commonly used additives are environmentally hazardous; when drilling fluids are disposed after drilling operations, they are discarded with the drill cuttings and additives into water sources and causes unwanted pollution. Therefore, these additives should be substituted with additives that are environmental friendly and provide superior performance. In this regard, biodegradable additives are required for future research. This review investigates the role of various bio-wastes as potential additives to be used in water-based drilling fluids. Furthermore, utilization of these waste-derived nanomaterials is summarized for rheology and lubricity tests. Finally, sufficient rheological and filtration examinations were carried out on water-based drilling fluids to evaluate the effect of wastes as additives on the performance of drilling fluids.


2016 ◽  
Vol 91 ◽  
pp. 392-402 ◽  
Author(s):  
Markus Povacz ◽  
Gernot M. Wallner ◽  
Michael K. Grabmann ◽  
Susanne Beißmann ◽  
Klemens Grabmayer ◽  
...  

2015 ◽  
Author(s):  
Qiyuan Li ◽  
Cheng Zheng ◽  
Sara Mesgari ◽  
Yasitha L. Hewakuruppu ◽  
Natasha Hjerrild ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document