Form-stable phase change nanocapsules with photo and electric dual responses for multipurpose applications in energy storage and conversion

2022 ◽  
Vol 235 ◽  
pp. 111461
Author(s):  
Liqing Cheng ◽  
Lingbo Kong ◽  
Xu Zhang ◽  
Xiangfei Kong
2018 ◽  
Vol 217 ◽  
pp. 212-220 ◽  
Author(s):  
Guanghui Leng ◽  
Geng Qiao ◽  
Zhu Jiang ◽  
Guizhi Xu ◽  
Yue Qin ◽  
...  

2021 ◽  
Vol 1016 ◽  
pp. 813-818
Author(s):  
Zi Wei Li ◽  
Elisabetta Gariboldi

Coarse form-stable phase change materials (FS-PCMs) can tailor the properties of pure PCMs. This is often attained by the presence of high-melting, high-thermal conductivity metallic phase which enhances the thermal energy storage/release. The evaluation of the thermal response of these composite materials in unsteady conditions, is not an easy task, and simplifications introduced to deal with them must be carefully considered. A set of FS-PCMs of prismatic geometry with polymeric wax as PCM and an Al foam with various pore sizes, modelled as BCC lattice has been considered in this paper. The thermal response under a set of boundary conditions with constant heat flux at the bottom surface, all other being adiabatic, was investigated both by direct simulations approach modelling the two phases and the ‘1-temperature model’, which considers the material as homogeneous and characterized by a proper set of effective properties. The ‘1-temperature model’ is able to closely reproduce the whole the local thermal history only within certain validity ranges, even if it can well reproduce the ‘average’ energy storage due to the transformation of the PCM phase.


Sign in / Sign up

Export Citation Format

Share Document