Robotic-assisted pedicle screw placement fails to reduce overall postoperative complications in fusion surgery

2019 ◽  
Vol 19 (2) ◽  
pp. 212-217 ◽  
Author(s):  
Alexander M. Lieber ◽  
Gregory J. Kirchner ◽  
Yehuda E. Kerbel ◽  
Amrit S. Khalsa
Neurosurgery ◽  
2019 ◽  
Vol 66 (Supplement_1) ◽  
Author(s):  
Jordan Cory ◽  
Mohammed A Awad ◽  
Richard G Bittar

Abstract INTRODUCTION Robot-assisted surgery has emerged as an innovative and minimally-invasive technique, touted as superior to the traditional free-hand technique of pedicle screw fixation in spinal fusion surgery. Complications of misplaced pedicle screws include inadequate fixation and surgical failure requiring revision, neural injury, cerebrospinal fluid (CSF) leak, vascular injury, and facet joint trauma with sequela of adjacent segment disease. Literature reports an incidence of pedicle screw misplacement in up to 10% with free-hand technique. Robot-assisted surgery has reported superiority with increased accuracy of pedicle screw placement and reduced complication rates. This prospective multi-institutional single cohort analysis reports the outcomes in robot-assisted spinal fusion surgery in Melbourne, Australia over 4 yr. METHODS Data was prospectively collected from 2015 to 2019 from robot-assisted spinal surgeries performed by 2 surgeons across 2 institutions. Postoperative spinal computed tomography (CT) scan was compared to preoperative CT based planning to determine the accuracy of pedicle screw placement to 0.1 mm. Accurate pedicle screw placement was defined as within 2.0 mm from the target. Intraoperative radiation exposure time, operative time and length of hospital stay were also collected. RESULTS The total number of cases was 164 and the total number of screws placed was 744. Accurate pedicle screw placement was 98.65%. Average intraoperative radiation exposure time was 9.9 s. Average operative time for single-level surgery was 74 min. The average length of hospital stay was 2.4 d. CONCLUSION The authors conclude that robot-assisted pedicle screw placement is a safe and highly accurate adjunct to spinal surgery. While robot-assisted spinal surgery significantly improves patient outcomes with reduced patient morbidity and revision rates, it has limitations in primary capital expenditure, consumable costs and, in training and accreditation. It is the authors’ opinion that the robot-assisted spinal surgery technique requires nuanced patient selection and expertise in the traditional free-hand method is still essential in the event of technological failure.


Author(s):  
Hsuan-Yu Chen ◽  
Xiu-Yun Xiao ◽  
Chih-Wei Chen ◽  
Hao-Kai Chou ◽  
Chen-Yu Sung ◽  
...  

2020 ◽  
Vol 10 (2) ◽  
pp. e0020-e0020
Author(s):  
Isador H. Lieberman ◽  
Stanley Kisinde ◽  
Shea Hesselbacher

2019 ◽  
Vol 14 (1) ◽  
pp. 199-203 ◽  
Author(s):  
Kade T. Huntsman ◽  
Leigh A. Ahrendtsen ◽  
Jessica R. Riggleman ◽  
Charles G. Ledonio

2021 ◽  
pp. 155633162110278
Author(s):  
Kyle W. Morse ◽  
Hila Otremski ◽  
Kira Page ◽  
Roger F. Widmann

Introduction: Pediatric spinal deformity involves a complex 3-dimensional (3D) deformity that increases the risk of pedicle screw placement due to the close proximity of neurovascular structures. To increase screw accuracy, improve patient safety, and minimize surgical complications, the placement of pedicle screws is evolving from freehand techniques to computer-assisted navigation and to the introduction of robotic-assisted placement. Purpose: The aim of this review was to review the current literature on the use of robotic navigation in pediatric spinal deformity surgery to provide both an error analysis of these techniques and to provide recommendations to ensure its safe application. Methods: A narrative review was conducted in April 2021 using the MEDLINE (PubMed) database. Studies were included if they were peer-reviewed retrospective or prospective studies, included pediatric patients, included a primary diagnosis of pediatric spine deformity, utilized robotic-assisted spinal surgery techniques, and reported thoracic or lumbar pedicle screw breach rates or pedicle screw malpositioning. Results: In the few studies published on the use of robotic techniques in pediatric spinal deformity surgery, several found associations between the technology and increased rates of screw placement accuracy, reduced rates of breach, and minimal complications. All were retrospective studies. Conclusions: Current literature is of a low level of evidence; nonetheless, the findings suggest the accuracy and safety of robotic-assisted spinal surgery in pediatric pedicle screw placement. The introduction of robotics may drive further advances in less invasive pediatric spinal deformity surgery. Further study is warranted.


2021 ◽  
Vol 10 (24) ◽  
pp. 5725
Author(s):  
Mirza Pojskić ◽  
Miriam Bopp ◽  
Christopher Nimsky ◽  
Barbara Carl ◽  
Benjamin Saβ

Background: Robot-guided spine surgery is based on a preoperatively planned trajectory that is reproduced in the operating room by the robotic device. This study presents our initial experience with thoracolumbar pedicle screw placement using Brainlab’s Cirq® surgeon-controlled robotic arm (BrainLab, Munich, Germany). Methods: All patients who underwent robotic-assisted implantation of pedicle screws in the thoracolumbar spine were included in the study. Our workflow, consisting of preoperative imagining, screw planning, intraoperative imaging with automatic registration, fusion of the preoperative and intraoperative imaging with a review of the preplanned screw trajectories, robotic-assisted insertion of K-wires, followed by a fluoroscopy-assisted insertion of pedicle screws and control iCT scan, is described. Results: A total of 12 patients (5 male and 7 females, mean age 67.4 years) underwent 13 surgeries using the Cirq® Robotic Alignment Module for thoracolumbar pedicle screw implantation. Spondylodiscitis, metastases, osteoporotic fracture, and spinal canal stenosis were detected. A total of 70 screws were implanted. The mean time per screw was 08:27 ± 06:54 min. The mean time per screw for the first 7 surgeries (first 36 screws) was 16:03 ± 09:32 min and for the latter 6 surgeries (34 screws) the mean time per screw was 04:35 ± 02:11 min (p < 0.05). Mean entry point deviation was 1.9 ± 1.23 mm, mean deviation from the tip of the screw was 2.61 ± 1.6 mm and mean angular deviation was 3.5° ± 2°. For screw-placement accuracy we used the CT-based Gertzbein and Robbins System (GRS). Of the total screws, 65 screws were GRS A screws (92.85%), one screw was a GRS B screw, and two further screws were grade C. Two screws were D screws (2.85%) and underwent intraoperative revision. There were no perioperative deficits. Conclusion: Brainlab’s Cirq® Robotic Alignment surgeon-controlled robotic arm is a safe and beneficial method for accurate thoracolumbar pedicle screw placement with high accuracy.


Sign in / Sign up

Export Citation Format

Share Document