Motion of two-dimensional quantum particle under a linear potential in the presence of Rashba and Dresselhaus spin–orbit interactions

2021 ◽  
pp. 114582
Author(s):  
Bahruz Suleymanli ◽  
Enver Nakhmedov ◽  
Oktay Alekperov ◽  
Farida Tatardar ◽  
Bilal Tanatar
Author(s):  
Z.H. Tao ◽  
H.M. Dong ◽  
Y.F. Duan ◽  
F. Huang

We investigate on the plasmons of monolayer MoS2 in the presence of spin-orbit interactions (SOIs) under the random phase approximation. The theoretical study shows that two new and novel plasmonic modes can be achieved via inter spin sub-band transitions around the Fermi level duo to the SOIs. The plasmon modes are optic-like, which are very different from the plasmon modes reported recently in monolayer MoS2, and the other two-dimensional systems. The frequency of such plasmons increases with the increasing of the electron density or the spin polarizability, and decreases with the increasing of the wave vectors q. Our results exhibit some interesting features which can be utilized to the plasmonic and terahertz devices based on monolayer MoS2.


2020 ◽  
Vol 6 (15) ◽  
pp. eaay0114 ◽  
Author(s):  
Zhangzhang Cui ◽  
Alexander J. Grutter ◽  
Hua Zhou ◽  
Hui Cao ◽  
Yongqi Dong ◽  
...  

Engineering magnetic anisotropy in two-dimensional systems has enormous scientific and technological implications. The uniaxial anisotropy universally exhibited by two-dimensional magnets has only two stable spin directions, demanding 180° spin switching between states. We demonstrate a previously unobserved eightfold anisotropy in magnetic SrRuO3 monolayers by inducing a spin reorientation in (SrRuO3)1/(SrTiO3)N superlattices, in which the magnetic easy axis of Ru spins is transformed from uniaxial 〈001〉 direction (N < 3) to eightfold 〈111〉 directions (N ≥ 3). This eightfold anisotropy enables 71° and 109° spin switching in SrRuO3 monolayers, analogous to 71° and 109° polarization switching in ferroelectric BiFeO3. First-principle calculations reveal that increasing the SrTiO3 layer thickness induces an emergent correlation-driven orbital ordering, tuning spin-orbit interactions and reorienting the SrRuO3 monolayer easy axis. Our work demonstrates that correlation effects can be exploited to substantially change spin-orbit interactions, stabilizing unprecedented properties in two-dimensional magnets and opening rich opportunities for low-power, multistate device applications.


Sign in / Sign up

Export Citation Format

Share Document