Preparation and characterization of Polyvinylidene fluoride/Octaphenyl-Polyhedral oligomeric silsesquioxane hybrid Lithium-ion battery separators by electrospinning

2017 ◽  
Vol 310 ◽  
pp. 134-142 ◽  
Author(s):  
Hong-li Chen ◽  
Xiao-ning Jiao
Polymers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 576 ◽  
Author(s):  
Ziyu Bai ◽  
Wenmao Tu ◽  
Junke Zhu ◽  
Junsheng Li ◽  
Zhao Deng ◽  
...  

Polyhedral oligomeric silsesquioxane (POSS)-derived Si@C anode material is prepared by the copolymerization of octavinyl-polyhedral oligomeric silsesquioxane (octavinyl-POSS) and styrene. Octavinyl-polyhedral oligomeric silsesquioxane has an inorganic core (-Si8O12) and an organic vinyl shell. Carbonization of the core-shell structured organic-inorganic hybrid precursor results in the formation of carbon protected Si-based anode material applicable for lithium ion battery. The initial discharge capacity of the battery based on the as-obtained Si@C material Si reaches 1500 mAh g−1. After 550 charge-discharge cycles, a high capacity of 1430 mAh g−1 was maintained. A combined XRD, XPS and TEM analysis was performed to investigate the variation of the discharge performance during the cycling experiments. The results show that the decrease in discharge capacity in the first few cycles is related to the formation of solid electrolyte interphase (SEI). The subsequent rise in the capacity can be ascribed to the gradual morphology evolution of the anode material and the loss of capacity after long-term cycles is due to the structural pulverization of silicon within the electrode. Our results not only show the high potential of the novel electrode material but also provide insight into the dynamic features of the material during battery cycling, which is useful for the future design of high-performance electrode material.


Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1984
Author(s):  
Yu-Hsun Nien ◽  
Chih-Ning Chang ◽  
Pao-Lin Chuang ◽  
Chun-Han Hsu ◽  
Jun-Lun Liao ◽  
...  

In recent years, portable electronic devices have flourished, and the safety of lithium batteries has received increasing attention. In this study, nanofibers were prepared by electrospinning using different ratios of nylon 66/polyacrylonitrile (PAN), and their properties were studied and compared with commercial PP separators. The experimental results show that the addition of PAN in nylon 66/PAN nanofibrous film used as separator of lithium-ion battery can enhance the porosity up to 85%. There is also no significant shrinkage in the shrinkage test, and the thermal dimensional stability is good. When the Li/LiFePO4 lithium battery is prepared by nylon 66/PAN nanofibrous film used as separator, the capacitor can be maintained at 140 mAhg−1 after 20 cycles at 0.1 C, and the coulombic efficiency is still maintained at 99%, which has excellent electrochemical performance.


Sign in / Sign up

Export Citation Format

Share Document