scholarly journals p53 inactivation unmasks histone methylation-independent WDR5 functions that drive self-renewal and differentiation of pluripotent stem cells

Author(s):  
Qiang Li ◽  
Yuanhao Huang ◽  
Jing Xu ◽  
Fengbiao Mao ◽  
Bo Zhou ◽  
...  
PLoS ONE ◽  
2012 ◽  
Vol 7 (1) ◽  
pp. e30234 ◽  
Author(s):  
Luca Orlando ◽  
Yolanda Sanchez-Ripoll ◽  
James Foster ◽  
Heather Bone ◽  
Claudia Giachino ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Jungwoon Lee ◽  
Young-Jun Park ◽  
Haiyoung Jung

Protein kinases modulate the reversible postmodifications of substrate proteins to their phosphorylated forms as an essential process in regulating intracellular signaling transduction cascades. Moreover, phosphorylation has recently been shown to tightly control the regulatory network of kinases responsible for the induction and maintenance of pluripotency, defined as the particular ability to differentiate pluripotent stem cells (PSCs) into every cell type in the adult body. In particular, emerging evidence indicates that the balance between the self-renewal and differentiation of PSCs is regulated by the small molecules that modulate kinase signaling pathways. Furthermore, new reprogramming technologies have been developed using kinase modulators, which have provided novel insight of the mechanisms underlying the kinase regulatory networks involved in the generation of induced pluripotent stem cells (iPSCs). In this review, we highlight the recent progress made in defining the roles of protein kinase signaling pathways and their small molecule modulators in regulating the pluripotent states, self-renewal, reprogramming process, and lineage differentiation of PSCs.


2013 ◽  
Vol 33 (22) ◽  
pp. 4434-4447 ◽  
Author(s):  
Takashi Yugawa ◽  
Koichiro Nishino ◽  
Shin-ichi Ohno ◽  
Tomomi Nakahara ◽  
Masatoshi Fujita ◽  
...  

NOTCH plays essential roles in cell fate specification during embryonic development and in adult tissue maintenance. In keratinocytes, it is a key inducer of differentiation. ROCK, an effector of the small GTPase Rho, is also implicated in keratinocyte differentiation, and its inhibition efficiently potentiates immortalization of human keratinocytes and greatly improves survival of dissociated human pluripotent stem cells. However, the molecular basis for ROCK activation is not fully established in these contexts. Here we provide evidence that intracellular forms of NOTCH1 trigger the immediate activation of ROCK1 independent of its transcriptional activity, promoting differentiation and resulting in decreased clonogenicity of normal human keratinocytes. Knockdown of NOTCH1 abrogated ROCK1 activation and conferred sustained clonogenicity upon differentiation stimuli. Treatment with a ROCK inhibitor, Y-27632, or ROCK1 silencing substantially rescued the growth defect induced by activated NOTCH1. Furthermore, we revealed that impaired self-renewal of human induced pluripotent stem cells upon dissociation is, at least in part, attributable to NOTCH-dependent ROCK activation. Thus, the present study unveils a novel NOTCH-ROCK pathway critical for cellular differentiation and loss of self-renewal capacity in a subset of immature cells.


2013 ◽  
Vol 25 (1) ◽  
pp. 301
Author(s):  
A. R. Fan ◽  
K. Y. Ma ◽  
T. C. Zhao ◽  
P. P. An ◽  
B. Tang ◽  
...  

It was recently found that the ten-eleven-translocation (TET) family of Fe(II) and 2-oxoglutarate-dependent enzymes (Tet1/2/3) can oxidize 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), and thus promotes active demethylation of genomes. Tet1 is highly expressed in mouse embryonic stem cells (mESC) and has been demonstrated to involve in mESC maintenance. Here we used small interference RNA (siRNA) to transiently knockdown expression of Tet1 in porcine induced pluripotent stem cells (iPSC) in order to identify its functions. The fetal fibroblasts were isolated from a 30-day-old porcine fetus and induced into iPSC with defined transcription factors, namely Oct-4, Sox-2, Klf-4, and C-myc. The colonies appeared on Day 12 and were picked up on Day 14. These colonies had normal ES-like morphology and alkaline phosphatase activity. Specifically, they were positively stained for pluripotency-specific markers, including Oct4, Sox2, Nanog, Rex1, and SSEA1. When cultured in vitro, the cells formed embryoid bodies (EB), and all 3 germ layer markers (endoderm: AFP, alphaAT; mesoderm: BMP4, Enolase; ectoderm: GFAP, Neurod) were detected positively in EB. For siRNA transfections, iPSC from the colonies were transfected with 40 pmol of siRNA and 2 µL of Lipofectamine 2000 in 1 well of a 24-well plate. After transfection, iPSC were subjected to fluorescence-activated cell sorting to determine the fraction of FAM-positive cells in order to confirm transfection efficiency; the percentage of positive cells reached 48 ± 4.96. We observed obvious knockdown of Tet1 after short-term transfection of siRNA, and the knockdown efficiency was confirmed using qRT-PCR and immunofluorescence staining. Notably, knockdown of Tet1 resulted in morphological abnormality and loss of undifferentiated state of porcine iPSC. However, no obvious morphological changes were observed in the negative control (transfected with nonsense-siRNA), positive control (transfected with GAPDH-siRNA), or mock control (transfected with DEPC-treated water). To gain insight into the molecular mechanism underlying the self-renewal defect, we analysed the effects of Tet1 knockdown on the expression of key stem cell factors and differentiation markers of different embryonic layers using qRT-PCR. We found that knockdown of Tet1 resulted in downregulated expression of pluripotency-related genes, such as Lefty-2, Klf-2, and Sox-2 (the expression ratios of post-transfection to pre-transfection were 0.31 ± 0.21, 0.48 ± 0.072, and 0.65 ± 0.046, respectively), and upregulated expression of differentiation-related genes, including Pitx-2, Hand-1, Gata-6, and Lef-1 (the expression ratios of post-transfection to pre-transfection were 4.35 ± 1.36, 2.56 ± 0.68, 2.91 ± 1.47, and 2.33 ± 1.11, respectively). However, Oct-4, C-myc, Klf-4, and Nanog were not downregulated (the expression ratios of post-transfection to pre-transfection were 0.91 ± 0.15, 1.12 ± 0.26, 1.15 ± 0.21, and 1.08 ± 0.08, respectively). Taken together, Tet1 plays important roles in porcine iPSC self-renewal and characterization maintenance. This study was financed by National Basic Research Program of China (NO.2009CB941001).


2014 ◽  
Vol 15 (1) ◽  
pp. 92-101 ◽  
Author(s):  
Yu Lu ◽  
Yuin-Han Loh ◽  
Hu Li ◽  
Marcella Cesana ◽  
Scott B. Ficarro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document