Long-term influence of leguminous cover crops on the biochemical properties of a sandy clay loam Fluventic Sulfaquent in a humid tropical region of India

2004 ◽  
Vol 77 (1) ◽  
pp. 69-77 ◽  
Author(s):  
R. Dinesh ◽  
M.A. Suryanarayana ◽  
S. Ghoshal Chaudhuri ◽  
T.E. Sheeja
1977 ◽  
Vol 89 (1) ◽  
pp. 81-86 ◽  
Author(s):  
J. Bolton

SummarySoils were analysed from two long-term liming experiments on a sandy-clay loam at Rothamsted and a loamy sand at Woburn. Plots given four levels of limestone factorially combined with phosphate and potassium fertilizers (with magnesium subplots in 1974) were cropped with beans, barley, potatoes and oats from 1963 to 1974.The smallest limestone applications (5 t CaCO3/ha) increased soil pH the following year to values predicted by lime-requirement determinations using a standard advisory method. The larger limestone applications (10 and 20 t/ha) increased pH proportionally less. Soil pH decreased after the first year with 5 t/ha in both experiments but increased at the 20 t/ha rate for 6 years in the sandy-clay loam and for 3 years in the loamy sand before starting to decline.Exchangeable calcium (soluble in N ammonium acetate) decreased at approximately linear rates in all plots of both experiments from the first year. Slopes of the regressions were smaller at low than at higher rates of liming, depending primarily on the average pH. Rates of CaCO3 losses from the surface 23 cm of soil ranged from 225 to 823 kg/ha per year at Rothamsted and from 307 to 852 kg/ha per year at Woburn.Observed rates of Ca loss were compared with an empirical relationship suggested by Gasser (1973) between annual Ca losses and soil pH under average rainfall conditions and estimates based on a model system.


Geoderma ◽  
2017 ◽  
Vol 301 ◽  
pp. 72-79 ◽  
Author(s):  
José Miguel Reichert ◽  
André Anibal Brandt ◽  
Miriam Fernanda Rodrigues ◽  
Milton da Veiga ◽  
Dalvan José Reinert

2020 ◽  
Vol 8 (6) ◽  
pp. 1038-1041
Author(s):  
C Bharathi ◽  
P Murali Arthanari ◽  
C Chinnusamy

Soil Research ◽  
2019 ◽  
Vol 57 (8) ◽  
pp. 814 ◽  
Author(s):  
Arkadiusz Telesiński ◽  
Teresa Krzyśko-Łupicka ◽  
Krystyna Cybulska ◽  
Barbara Pawłowska ◽  
Robert Biczak ◽  
...  

This study used laboratory experiments to compare the effects of coal tar creosote on the activity of oxidoreductive enzymes in sandy loam, loamy sand and sandy clay loam soils. Different amounts of coal tar creosote were added to soil samples as follows: 0 (control), 2, 10 or 50 g kg–1 dry matter. The activity of soil dehydrogenases (DHAs), o-diphenol oxidase (o-DPO), catalase (CAT), nitrate reductase (NR) and peroxidases (POX) was determined. Contamination of soil with coal tar creosote affected oxidoreductase activity. Oxidoreductive enzyme activity following soil contamination with coal tar creosote was in the following order: DHAs > CAT > NR > POX > o-DPO in loamy sand and in sandy loam; and DHAs > POX > CAT > NR > o-DPO in sandy clay loam. The index of soil oxidoreductive activity (IOx) introduced in this study confirms the negative effect of coal tar creosote on oxidoreductase activity in soil. DHAs were the most sensitive to the contamination of soil with coal tar creosote. Moreover, the greatest changes in oxidoreductase activities were observed in loamy sand. Knowledge of the mechanism underlying the effects of coal tar creosote on oxidoreductive processes may enable development of a method for the bioremediation of polycyclic aromatic hydrocarbon-contaminated soils.


2021 ◽  
Vol 14 (4) ◽  
Author(s):  
Haroon Shahzad ◽  
Muhammad Iqbal ◽  
Noman Latif ◽  
Muhammad Arshad Khan ◽  
Qudrat Ullah Khan

Sign in / Sign up

Export Citation Format

Share Document