Effect of pasture improvement managements on physical properties and water content dynamics of a volcanic ash soil in southern Chile

2018 ◽  
Vol 178 ◽  
pp. 55-64 ◽  
Author(s):  
Iván Ordóñez ◽  
Ignacio F. López ◽  
Peter D. Kemp ◽  
Constanza A. Descalzi ◽  
Rainer Horn ◽  
...  

2015 ◽  
Vol 178 (4) ◽  
pp. 693-702 ◽  
Author(s):  
José Dörner ◽  
Jenny Huertas ◽  
Jaime G. Cuevas ◽  
César Leiva ◽  
Leandro Paulino ◽  
...  


1997 ◽  
Vol 1 (2) ◽  
pp. 303-312 ◽  
Author(s):  
S. Hasegawa

Abstract. Time domain reflectometry (TDR) was used to monitor soil water conditions and to evaluate infiltration characteristics associated with rainfall into a volcanic-ash soil (Hydric Hapludand) with a low bulk density. Four 1 m TDR probes were installed vertically along a 6 m line in a bare field. Three 30 cm and one 60 cm probes were installed between the 1 m probes. Soil water content was measured every half or every hour throughout the year. TDR enabled prediction of the soil water content precisely even though the empirical equation developed by Topp et al. (1980) underestimated the water content. Field capacity, defined as the amount of water stored to a depth of 1 m on the day following heavy rainfall, was 640 mm. There was approximately 100 mm difference in the amount of water stored between field capacity and the driest period. Infiltration characteristics of rainfall were investigated for 36 rainfall events exceeding 10 mm with a total amount of rain of 969 mm out of an annual rainfall of 1192 mm. In the case of 25 low intensity rainfall events with less than 10 mm h-1 on to dry soils, the increase in the amount of water stored to a depth of 1 m was equal to the cumulative rainfall. For rain intensity in excess of 10 mm h-1, non-uniform infiltration occurred. The increase in the amount of water stored at lower elevation locations was 1.4 to 1.6 times larger than at higher elevation locations even though the difference in ground height among the 1 m probes was 6 cm. In the two instances when rainfall exceeded 100 mm, including the amount of rain in a previous rainfall event, the increase in the amount of water stored to a depth of 1 m was 65 mm lower than the total quantity of rain on the two occasions (220 mm); this indicated that 65 mm of water or 5.5% of the annual rainfall had flowed away either by surface runoff or bypass flow. Hence, approximately 95% of the annual rainfall was absorbed by the soil matrix but it is not possible to simulate soil water movement by Darcy's law over a long period at farm level due to the local differences in rainfall intensity.



2017 ◽  
Vol 81 (5) ◽  
pp. 1064-1073 ◽  
Author(s):  
José Dörner ◽  
Rainer Horn ◽  
Dorota Dec ◽  
Ole Wendroth ◽  
Heiner Fleige ◽  
...  


2014 ◽  
Vol 4 (2) ◽  
pp. 55-64
Author(s):  
Amir Jayani ◽  
Zulman Efendi ◽  
Devi Silsia

This study aims to gain influence the thickness and concentration variations affect the characteristics of sago binder physical properties of catfish jerky. As well as getting influence the thickness and concentration variations affect the level of binder sago joy panelists in terms of organoleptic test. Data were analyzed by analysis of variance using the Analysis Of Variance (ANOVA). If there is a significant difference followed by a further test of DMRT 5% level (physical properties). While the hedonic test performed using Kruskal Wallis analysis. Results uniformity analysis (ANOVA) showed catfish fillet thickness and concentration of sago affect the physical properties of the water content and the level of violence. Where catfish jerky using sago binder 5% and 10% significantly different. The use of sago binder 5% and 10% led to an increase in water content. Besides the addition of the binder resulted in increasing levels of violence catfish jerky. Based on the statistics found that the influence of the thickness and concentration of the binder sago aroma, flavor and color of the sixth jerky catfish were not significantly different. But the texture was significantly different.



2002 ◽  
Vol 51 (4) ◽  
pp. 269-279 ◽  
Author(s):  
Shin-ichi YAMASAKI ◽  
Shoji HIRAI ◽  
Masataka NISHIKAWA ◽  
Yoshinori TAKATA ◽  
Akira TSURUTA ◽  
...  


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1169
Author(s):  
Long Thanh Bui ◽  
Yasushi Mori

If soil hydraulic conductivity or water holding capacity could be measured with a small volume of samples, it would benefit international fields where researchers can only carry a limited amount of soils out of particular regions. We performed a pinhole multistep centrifuge outflow method on three types of soil, which included granite decomposed soil (Masa soil), volcanic ash soil (Andisol soil), and alluvial clayey soil (paddy soil). The experiment was conducted using 2 mL and 15 mL centrifuge tubes in which pinholes were created on the top and bottom for air intrusion and outflow, respectively. Water content was measured at 5, 15, and 30 min after applying the centrifuge to examine the equilibrium time. The results showed that pinhole drainage worked well for outflow, and 15 or 30 min was sufficient to obtain data for each step. Compared with equilibrium data, the retention curve was successfully optimized. Although the curve shape was similar, unsaturated hydraulic conductivities deviated largely, which implied that Ks caused convergence issues. When Ks was set as a measured constant, the unsaturated hydraulic properties converged well and gave excellent results. This method can provide soil hydraulic properties of regions where soil sampling is limited and lacks soil data.



2007 ◽  
Vol 47 (3) ◽  
pp. 629-633
Author(s):  
Masahiro Isoyama ◽  
Shin-ichiro Wada


Sign in / Sign up

Export Citation Format

Share Document