Resistance of Coarse-grained Particles against Raindrop Splash and Its Relation with Splash Erosion

2018 ◽  
Vol 184 ◽  
pp. 1-10 ◽  
Author(s):  
Hyunwook Choo ◽  
Ka-Hyun Park ◽  
Jongmook Won ◽  
Susan E. Burns
2019 ◽  
Vol 12 (1) ◽  
pp. 157 ◽  
Author(s):  
David Zumr ◽  
Danilo Vítor Mützenberg ◽  
Martin Neumann ◽  
Jakub Jeřábek ◽  
Tomáš Laburda ◽  
...  

An experimental laboratory setup was developed and evaluated in order to investigate detachment of soil particles by raindrop splash impact. The soil under investigation was a silty loam Cambisol, which is typical for agricultural fields in Central Europe. The setup consisted of a rainfall simulator and soil samples packed into splash cups (a plastic cylinder with a surface area of 78.5 cm2) positioned in the center of sediment collectors with an outer diameter of 45 cm. A laboratory rainfall simulator was used to simulate rainfall with a prescribed intensity and kinetic energy. Photographs of the soil’s surface before and after the experiments were taken to create digital models of relief and to calculate changes in surface roughness and the rate of soil compaction. The corresponding amount of splashed soil ranged between 10 and 1500 g m−2 h−1. We observed a linear relationship between the rainfall kinetic energy and the amount of the detached soil particles. The threshold kinetic energy necessary to initiate the detachment process was 354 J m−2 h−1. No significant relationship between rainfall kinetic energy and splashed sediment particle-size distribution was observed. The splash erosion process exhibited high variability within each repetition, suggesting a sensitivity of the process to the actual soil surface microtopography.


CATENA ◽  
2020 ◽  
Vol 185 ◽  
pp. 104342
Author(s):  
Yu Fu ◽  
Guanglu Li ◽  
Tenghui Zheng ◽  
Yingsong Zhao ◽  
Mingxi Yang

2013 ◽  
Vol 46 (1) ◽  
pp. 168-174 ◽  
Author(s):  
Wenjie Liu ◽  
Qinpu Luo ◽  
Jintao Li ◽  
Pingyuan Wang ◽  
Hongjian Lu ◽  
...  

The Xishuangbanna (SW China) landscape has changed dramatically during the past three decades due to the conversion of tropical rainforest to rubber plantations. This study characterized the influence of conversion of tropical rainforest to rubber plantation on potential splash erosion rate and actual splash erosion rate. The average potential splash erosion rate was 2.1 times higher in the rubber plantation than in the open, while for the rainforest it was only 1.2 times higher than in the open, suggesting that the rubber plantation canopy greatly increased the rainsplash erosion. The average actual splash erosion rate was 2.0 times higher in the rubber plantation than in the rainforest, demonstrating that the rainforest was more effective in controlling splash erosion. The actual splash erosion rate was considerably lower in the terrace bench than in the riser bank in the rubber plantation, indicating that the riser bank was more sensitive to raindrop splash. Hence, protection of terrace risers with productive vegetation or litter/mulch layer is of vital importance in this bench-terraced rubber plantation. These results clearly show that conversion of tropical rainforest to rubber plantation had a negative effect on controlling splash erosion.


2002 ◽  
Vol 7 (4) ◽  
pp. 201-211 ◽  
Author(s):  
Satoru Miura ◽  
Keizo Hirai ◽  
Tsuyoshi Yamada

Author(s):  
R. E. Ferrell ◽  
G. G. Paulson

The pore spaces in sandstones are the result of the original depositional fabric and the degree of post-depositional alteration that the rock has experienced. The largest pore volumes are present in coarse-grained, well-sorted materials with high sphericity. The chief mechanisms which alter the shape and size of the pores are precipitation of cementing agents and the dissolution of soluble components. Each process may operate alone or in combination with the other, or there may be several generations of cementation and solution.The scanning electron microscope has ‘been used in this study to reveal the morphology of the pore spaces in a variety of moderate porosity, orthoquartzites.


Author(s):  
J. M. Walsh ◽  
K. P. Gumz ◽  
J. C. Whittles ◽  
B. H. Kear

During a routine examination of the microstructure of rapidly solidified IN-100 powder, produced by a newly-developed centrifugal atomization process1, essentially two distinct types of microstructure were identified. When a high melt superheat is maintained during atomization, the powder particles are predominantly coarse-grained, equiaxed or columnar, with distinctly dendritic microstructures, Figs, la and 4a. On the other hand, when the melt superheat is reduced by increasing the heat flow to the disc of the rotary atomizer, the powder particles are predominantly microcrystalline in character, with typically one dendrite per grain, Figs, lb and 4b. In what follows, evidence is presented that strongly supports the view that the unusual microcrystalline structure has its origin in dendrite erosion occurring in a 'mushy zone' of dynamic solidification on the disc of the rotary atomizer.The critical observations were made on atomized material that had undergone 'splat-quenching' on previously solidified, chilled substrate particles.


Author(s):  
Wang Zheng-fang ◽  
Z.F. Wang

The main purpose of this study highlights on the evaluation of chloride SCC resistance of the material,duplex stainless steel,OOCr18Ni5Mo3Si2 (18-5Mo) and its welded coarse grained zone(CGZ).18-5Mo is a dual phases (A+F) stainless steel with yield strength:512N/mm2 .The proportion of secondary Phase(A phase) accounts for 30-35% of the total with fine grained and homogeneously distributed A and F phases(Fig.1).After being welded by a specific welding thermal cycle to the material,i.e. Tmax=1350°C and t8/5=20s,microstructure may change from fine grained morphology to coarse grained morphology and from homogeneously distributed of A phase to a concentration of A phase(Fig.2).Meanwhile,the proportion of A phase reduced from 35% to 5-10°o.For this reason it is known as welded coarse grained zone(CGZ).In association with difference of microstructure between base metal and welded CGZ,so chloride SCC resistance also differ from each other.Test procedures:Constant load tensile test(CLTT) were performed for recording Esce-t curve by which corrosion cracking growth can be described, tf,fractured time,can also be recorded by the test which is taken as a electrochemical behavior and mechanical property for SCC resistance evaluation. Test environment:143°C boiling 42%MgCl2 solution is used.Besides, micro analysis were conducted with light microscopy(LM),SEM,TEM,and Auger energy spectrum(AES) so as to reveal the correlation between the data generated by the CLTT results and micro analysis.


Sign in / Sign up

Export Citation Format

Share Document