scholarly journals Experimental Setup for Splash Erosion Monitoring—Study of Silty Loam Splash Characteristics

2019 ◽  
Vol 12 (1) ◽  
pp. 157 ◽  
Author(s):  
David Zumr ◽  
Danilo Vítor Mützenberg ◽  
Martin Neumann ◽  
Jakub Jeřábek ◽  
Tomáš Laburda ◽  
...  

An experimental laboratory setup was developed and evaluated in order to investigate detachment of soil particles by raindrop splash impact. The soil under investigation was a silty loam Cambisol, which is typical for agricultural fields in Central Europe. The setup consisted of a rainfall simulator and soil samples packed into splash cups (a plastic cylinder with a surface area of 78.5 cm2) positioned in the center of sediment collectors with an outer diameter of 45 cm. A laboratory rainfall simulator was used to simulate rainfall with a prescribed intensity and kinetic energy. Photographs of the soil’s surface before and after the experiments were taken to create digital models of relief and to calculate changes in surface roughness and the rate of soil compaction. The corresponding amount of splashed soil ranged between 10 and 1500 g m−2 h−1. We observed a linear relationship between the rainfall kinetic energy and the amount of the detached soil particles. The threshold kinetic energy necessary to initiate the detachment process was 354 J m−2 h−1. No significant relationship between rainfall kinetic energy and splashed sediment particle-size distribution was observed. The splash erosion process exhibited high variability within each repetition, suggesting a sensitivity of the process to the actual soil surface microtopography.

2020 ◽  
Author(s):  
Nives Zambon ◽  
Lisbeth Lolk Johannsen ◽  
Peter Strauss ◽  
Tomáš Dostál ◽  
David Zumr ◽  
...  

<p>Soil erosion by water is globally the main soil degradation process which leaves serious consequences on agricultural land and water aquifers. Splash erosion is the initial stage of soil erosion by water, resulting from the destructive force of rain drops acting on soil surface aggregates. Splash erosion studies conducted in laboratories use rainfall simulators. They produce artificial rainfall which can vary according to type of the rainfall simulator. In this study the aim was to quantify the differences in splash erosion rates affected by rainfall produced by two different rainfall simulators on two silt loam and one loamy sand soil. Splash erosion was measured using modified Morgan splash cups and the rainfall simulators were equipped with four VeeJet or one FullJet nozzle. The soil samples placed under simulated rainfall were exposed to intensity range from 28 to 54 mm h<sup>-1</sup> and from 35 to 81 mm h<sup>-1</sup>, depending on the rainfall simulator. Rainfall characteristics such as drop size and velocity distribution were measured with an optical laser disdrometer Weather Sensor OTT Parsivel Version 1 (Parsivel) by OTT Messtechnik. Rainfall simulator with VeeJet nozzles produced smaller drops but higher drop velocity which resulted in higher kinetic energy per mm of rainfall compared to rainfall simulator with FullJet nozzles. For the same intensity rate measured kinetic energy under the rainfall simulator with VeeJet nozzles was 45% higher than rainfall kinetic energy from rainfall simulator with FullJet nozzles. Accordingly, the average splash erosion rate was 45 and 59% higher under the rainfall simulator with VeeJet nozzles for one silt loam and loamy sand soil, respectively. Splash erosion was found to be a linear or power function of the rainfall kinetic energy, depending on rainfall simulator. The obtained results highlight the sensitivity of the splash erosion process to rainfall characteristics produced by different rainfall simulators. The heterogeneity of rainfall characteristics between different types of rainfall simulators makes a direct comparison of results obtained from similar erosion studies difficult. Further experiments including comparison between more rainfall simulators could define influencing rainfall parameters on splash erosion under controlled laboratory conditions.</p>


2012 ◽  
Vol 7 (No. 4) ◽  
pp. 159-165 ◽  
Author(s):  
M. Boroghani ◽  
F. Hayavi ◽  
H. Noor

Splash erosion is recognized as the first stage in a soil erosion process and results from the soil surface bombing by rain drops. At the moment when rain drops conflict with the soil surface, soil particles move and destruct the soil structure. Soil particles dispersed by rain drops and moved by runoff are two basic soil erosion processes. In this study, the effect of applying various amounts of polyacrylamide (PAM) (0, 0.2, 0.4 and 0.6 g/m<sup>2</sup>) on the quantity of splash erosion at three rainfall intensities of 65, 95 and 120 mm/h by using of FEL3 rainfall simulator was investigated in marly soil in a laboratory. Results indicated differences in the effects of various treatments with PAM at all rainfall intensities, such as 0.6 g/m<sup>2</sup> PAM had the maximum effect on the splash erosion control by reducing soil erosion by about 28.93%. But statistical results showed that the use of various amounts of PAM (0.2, 0.4 and 0.6 g/m<sup>2</sup>) for controlling splash erosion at various rain intensities to decrease splash erosion did not reveal a statistically significant difference. Therefore, the application of 0.2, 0.4 and 0.6 g/m<sup>2</sup> PAM reduced the splash erosion, however, there was no statistical difference among these application rates of PAM. Finally, the results of statistical analysis of different intensities showed that only at 120 mm/h there was a significant difference between PAM treatment and control treatment (0 g/m<sup>2</sup> PAM) in the splash erosion control. At this intensity, the treatment with 0.4 g/m<sup>2</sup> PAM produced a maximum effect on the splash erosion control with 40% in comparison with the control treatment.


2021 ◽  
Vol 9 ◽  
Author(s):  
Sun Sanxiang ◽  
Zhang Yunxia ◽  
Lei Pengshui

This research aims to unfold the mass exchange mechanism of water and soil on the soil surface in the rainfall splash erosion process. We regard the rainfall splash erosion process as a collision process between the raindrop and the soil particle on the soil interface. This recognition allows us to incorporate research approaches from the spring vibrator model, which has been developed for simulating the impact of liquid drops on solid surface. We further argue that because a same set of factors determine the splash amount and infiltration amount and it is relatively simpler to observe the infiltration amount, an investigation into the relationship between the splash amount and infiltration amount would be able to provide a new channel for quantifying the splash erosion. This recognition leads us to examining the relationship between single raindrop, rainfall kinetic energy and splash erosion from both theoretical and empirical angles, with an emphasis on the relationship between the infiltration amount and the splash erosion. Such an investigation would add value to the collective effort to establish mass exchange law in water-soil interface during rainfall splash erosion. It is found that during the rainfall splash process, the splash erosion is proportional to the rainfall kinetic energy; and has a linear relation to the infiltration amount, with the rainfall intensity as one of important parameters and the slope depending on the unit conversation of the infiltration amount and the splash erosion. If the units of two items are same, the slope is the ratio of the soil and water density, and the splash erosion velocity of the rainfall is half of the rainfall terminal velocity. The single raindrop kinetic energy and the splash erosion have a quadratic parabola relation, and the splash velocity is about 1/3 of single raindrop terminal velocity.


2013 ◽  
Vol 9 (S301) ◽  
pp. 321-324
Author(s):  
Jakub Ostrowski ◽  
Jadwiga Daszyńska-Daszkiewicz

AbstractWe present results of pulsation analyses of B-type supergiant models with masses of 14 – 18 M⊙, considering evolutionary stages before and after helium core ignition. Using a non-adiabatic pulsation code, we compute instability domains for low-degree modes. For selected models in these two evolutionary phases, we compare properties of pulsation modes. Significant differences are found in oscillation spectra and the kinetic energy density of pulsation modes.


Solid Earth ◽  
2013 ◽  
Vol 4 (2) ◽  
pp. 381-385 ◽  
Author(s):  
A. Novara ◽  
L. Gristina ◽  
J. Rühl ◽  
S. Pasta ◽  
G. D'Angelo ◽  
...  

Abstract. The aim of this work was to investigate the effect of an experimental fire used for grassland management on soil organic carbon (SOC) stocks. The study was carried out on Hyparrhenia hirta (L.) Stapf (Hh) grassland and Ampelodesmos mauritanicus (Desf.) T. Durand &amp; Schinz (Am) grasslands located in the north of Sicily. Soil samples were collected at 0–5 cm before and after the experimental fire, and SOC was measured. During the grassland fire, soil surface temperature was monitored. Biomass of both grasses was analysed in order to determine dry weight and its chemical composition. The results showed that SOC varied significantly with vegetation type, while it is not affected in the short term by grassland fire. Am grassland stored more SOC compared with Hh grassland thanks to lower content in the biomass of the labile carbon pool. No significant difference was observed in SOC before and after fire, which could be caused by several factors: first, in both grassland types the measured soil temperature during fire was low due to thin litter layers; second, in a semiarid environment, a higher mineralization rate results in a lower soil carbon labile pool; and third, the SOC stored in the finest soil fractions, physically protected, is not affected by fire.


2015 ◽  
Vol 57 (1) ◽  
pp. 70-81 ◽  
Author(s):  
Jeremi Kołodziejek ◽  
Jacek Patykowski

Abstract Germination responses of Galium cracoviense Ehrend. (Rubiaceae), a narrow endemic species from southern Poland, were tested in light and dark conditions at three constant temperatures (5, 10, or 22°C), before and after cold-wet stratification. Additionally, seeds were germinated under different calcium carbonate (CaCO3) concentrations (1, 5, 10, 15, 20, or 25 mM/L CaCO3) at 22°C in light. The high germination capacity of seeds incubated at different temperatures, shortly after collection, already suggested the absence of dormancy in this species. Thus, the seeds are ready to germinate immediately in the field when water resources are available and the temperature is adequate. Light was a significant factor for G. cracoviense; more seeds germinated in light than in darkness at all temperatures tested. Cold stratification decreased germination especially at higher temperatures. The light requirement for G. cracoviense germination ensures their successful germination on or near the soil surface, and in cracks and crevices in limestone, when temperature and edaphic conditions are favourable. Seeds of this species show temperature enforced dormancy throughout the winter. Germination was significantly affected by calcium carbonate. Non-germinated seeds germinated well after being transferred from higher CaCO3 concentrations to distilled water. The results indicate that the seeds of this species can endure CaCO3 stress without losing their viability and start germination once CaCO3 concentration is reduced. It can be concluded that the seeds of this species require lower Ca2+ ion concentration, moderate temperatures and the presence of light to germinate.


2020 ◽  
Author(s):  
Eyal Ben Dor ◽  
Gila Notesko ◽  
Shahar Weksler

&lt;p&gt;Soil mineralogy holds important information on the soil origin and development. Most common minerals in soils&amp;#8212;quartz, clay minerals and carbonates&amp;#8212;present fundamental spectral features in the longwave infrared (LWIR) region (8.0&amp;#8211;12 &amp;#956;m range), whereas quartz is featureless in the optical region (0.4&amp;#8211;2.5 &amp;#956;m range). A procedure for determining the soil surface mineralogy from hyperspectral LWIR data was used to assess the interaction with desert dust particles that accumulate on the soil surface during dust storms. Ground- and field-based hyperspectral LWIR images of different types of Israeli soils, before and after dispersion of desert dust-like material on the surface, were acquired with the Telops Hyper-Cam sensor, to calculate the surface emissivity spectra of soils, representing the surface mineralogy. Identifying mineral-related emissivity features and calculating their relative intensities, using two created indices&amp;#8213;SQCMI (Soil Quartz Clay Mineral Index) and SCI (Soil Carbonate Index)&amp;#8213;enabled determining the content of quartz, clay minerals, and carbonates in the soil in a semi-quantitative manner&amp;#8212;from more to less abundant, and identifying changes in their abundance resulting from the dispersion of dust on the surface. The dust affected the mineral-related spectral features of the soil surface, depending on the mineral composition of the dust compared to soil surface mineralogy, and its amount. The ability to detect minor mineralogical changes on the soil surface using high spectral resolution LWIR data was demonstrated.&lt;/p&gt;


1984 ◽  
Vol 64 (2) ◽  
pp. 273-282 ◽  
Author(s):  
J. A. MILLETTE ◽  
R. S. BROUGHTON

The effects of two water table depths (WTD), 0.6 and 0.9 m below the soil surface on subsidence, subsidence rate and swelling of an organic soil were observed in large undisturbed cores under greenhouse conditions. Measurements were made in two tiers, 0–0.3 m (top tier) and 0.3 m to WTD (bottom tier) during the growth of a carrot crop with WTD as above, and continued following a rise in the water table. The WTD of 0.9 m caused the top tier to subside twice as much as the same tier in the 0.6 m WTD. Top tier subsidence seemed irreversible in both WTD because minor swelling was observed following a rise in the water table. Most of the reversible subsidence occurred in the bottom tier. Raising the water table reduced the total profile subsidence by 36 and 24% for the 0.6 and 0.9 m WTD, respectively. After correction for oxidation, subsidence accounted for 3.2 and 5.9% of the 0.6- and 0.9-m profiles, respectively. The bulk density increase in the 0.6-m profile before and after the end of the experiment was not significant but a significant increase of 11% was measured in the 0.9-m profile. Subsidence rates decreased in both tiers during the growing period reaching a minimum in both WTD at harvest time. The subsidence rate in 0.9-m profile at 100 days after seeding was 2.5 times the rate in the 0.6-m profile. Key words: Organic soil, subsidence, swelling, water table


2019 ◽  
Author(s):  
Auguste Gires ◽  
Philippe Bruley ◽  
Anne Ruas ◽  
Daniel Schertzer ◽  
Ioulia Tchiguirinskaia

Abstract. The Hydrology, Meteorology and Complexity laboratory of Ecole des Ponts ParisTech (hmco.enpc.fr) and the Sense-City consortium (http://sense-city.ifsttar.fr/) make available a data set of optical disdrometers measurements coming from a cam-paign that took place in September 2017 under the rainfall simulator of the Sense-City climatic chamber which is located near Paris. Two OTT Parsivel2 were used. The size and velocity of drops falling through the sampling area of the devices of roughly few tens of cm2 is computed by disdrometers. This enables to estimate the drop size distribution and further study rainfall micro-physics or kinetic energy for example. Raw data, i.e. basically a matrix containing a number of drops according to classes of size and velocity, along with more aggregated ones such rain rate or drop size distribution with filtering is available. Link to the data set (Gires et al., 2019): http://doi.org/10.5281/zenodo.3347051.


Sign in / Sign up

Export Citation Format

Share Document