Using reflectance spectroscopy for detecting land-use effects on soil quality in drylands

2020 ◽  
Vol 199 ◽  
pp. 104571 ◽  
Author(s):  
Nathan Levi ◽  
Arnon Karnieli ◽  
Tarin Paz-Kagan
2021 ◽  
pp. e00383
Author(s):  
John J. Drewry ◽  
Jo-Anne E. Cavanagh ◽  
Stephen J. McNeill ◽  
Bryan A. Stevenson ◽  
Dougall A. Gordon ◽  
...  

2012 ◽  
Vol 53 ◽  
pp. 114-120 ◽  
Author(s):  
Quanying Wang ◽  
Jingshuang Liu ◽  
Yang Wang ◽  
Jiunian Guan ◽  
Qiang Liu ◽  
...  

2020 ◽  
Author(s):  
Nathan Levi ◽  
Arnon Karnieli ◽  
Tarin Paz-Kagan

<p>The rapid growth in the global population over the past few decades has resulted in the transformation of many natural ecosystems into human-dominated ones. Land-use (LU) dynamics are accompanied by an increase in resource exploitation, often causing deteriorated environmental conditions that are reflected in the soil quality. Soil quality differences between LUs can be observed and measured using near-infrared reflectance spectroscopy (NIRS) methods. The research goal was to apply, measure, and evaluate soil properties based solely on the spectral differences between both natural and human-dominated LU practices, in the dryland environment of the central Negev Desert, Israel. This goal was achieved through the development and implementation of chemometrics techniques that were generated from soil point spectroscopy. Soil quality index (SQI) values, based on 14 physical, biological, and chemical soil properties, were quantified and compared between LUs and geographical units across the study area. Laboratory spectral measurements of soil samples were applied. Significant differences in SQI values were found between the geographical units. The statistical and mathematical methods for evaluating the soil properties’ spectral differences included principal component analysis (PCA), partial least squares-regression (PLS-R), and partial least squares-discriminant analysis (PLS-DA). Correlations between predicted spectral values and measured soil properties and SQI were calculated using PLS-R and evaluated by the coefficient of determination (R<sup>2</sup>), the Root Mean Square Error of Calibration, and Cross-Validation (RMSEC and RMSECV), and the ratio of performance to deviation (RPD). The PLS-R managed to produce “excellent” and “good” prediction values for some of the soil properties, including EC, Cl, Na, Ca + Mg, SAR, NO<sub>3</sub>, P, and SOM. Results of the PLS-R model for SQI are R<sup>2</sup> = 0.90, RPD = 2.46, RMSEC = 0.034, and RMSECV = 0.057. The PLS-DA classification of the laboratory spectroscopy was applied and resulted in high accuracy and kappa coefficient values when comparing LUs. In contrast, comparing the sampling sites resulted in lower overall accuracy (Acc = 0.82) and kappa values (K<sub>c</sub> = 0.80). It is concluded that differentiation between physical, biological, and chemical soil properties, based on their spectral differences, is the key feature in the successful results for recognizing and characterizing various soil processes in an integrative approach.  The results prove that soil quality and most soil properties can be successfully monitored and evaluated using NIRS in a comprehensive, non-destructive, time- and cost-efficient method.</p>


2011 ◽  
Vol 24 (3) ◽  
pp. 277-286 ◽  
Author(s):  
E. Ozgoz ◽  
H. Gunal ◽  
N. Acir ◽  
F. Gokmen ◽  
M. Birol ◽  
...  

Author(s):  
Luís Carlos Iuñes de Oliveira Filho ◽  
Osmar Klauberg Filho ◽  
Dilmar Baretta ◽  
Cynthia Akemi Shinozaki Tanaka ◽  
José Paulo Sousa

Author(s):  
Louis J. Pignataro ◽  
Joseph Wen ◽  
Robert Burchell ◽  
Michael L. Lahr ◽  
Ann Strauss-Wieder

The purpose of the Transportation Economic and Land Use System (TELUS) is to convert the transportation improvement program (TIP) into a management tool. Accordingly, the system provides detailed and easily accessible information on transportation projects in the region, as well as their interrelationships and impacts. By doing so, TELUS enables public-sector agencies to meet organizational, Intermodal Surface Transportation Efficiency Act, state, and other mandates more effectively. The objectives are accomplished by providing the computer-based capability to analyze, sort, combine, and track transportation projects in or under consideration for a TIP; assessing the interrelationships among significant transportation projects; estimating the regional economic and land use effects of transportation projects; and presenting project information in an easily understood format, including geographic information system formats.


2021 ◽  
Vol 13 (3) ◽  
pp. 1398
Author(s):  
Tavjot Kaur ◽  
Simerpreet Kaur Sehgal ◽  
Satnam Singh ◽  
Sandeep Sharma ◽  
Salwinder Singh Dhaliwal ◽  
...  

The present study was conducted to investigate the seasonal effects of five land use systems (LUSs), i.e., wheat–rice (Triticum aestivum—Oryza sativa) system, sugarcane (Saccharum officinarum), orange (Citrus sinensis) orchard, safeda (Eucalyptus globules) forest, and grassland, on soil quality and nutrient status in the lower Satluj basin of the Shiwalik foothills Himalaya, India. Samples were analyzed for assessment of physico-chemical properties at four soil depths, viz., 0–15, 15–30, 30–45, and 45–60 cm. A total of 120 soil samples were collected in both the seasons. Soil texture was found to be sandy loam and slightly alkaline in nature. The relative trend of soil organic carbon (SOC), macro- and micro-nutrient content for the five LUSs was forest > orchard > grassland > wheat–rice > sugarcane, in the pre- and post-monsoon seasons. SOC was highly correlated with macronutrients and micronutrients, whereas SOC was negatively correlated with soil pH (r = −0.818). The surface soil layer (0–15 cm) had a significantly higher content of SOC, and macro- and micro-nutrients compared to the sub-surface soil layers, due to the presence of more organic content in the soil surface layer. Tukey’s multiple comparison test was applied to assess significant difference (p < 0.05) among the five LUSs at four soil depths in both the seasons. Principle component analysis (PCA) identified that SOC and electrical conductivity (EC) were the most contributing soil indicators among the different land use systems, and that the post-monsoon season had better soil quality compared to the pre-monsoon season. These indicators helped in the assessment of soil health and fertility, and to monitor degraded agroecosystems for future soil conservation.


Sign in / Sign up

Export Citation Format

Share Document