scholarly journals Assessment of Seasonal Variability in Soil Nutrients and Its Impact on Soil Quality under Different Land Use Systems of Lower Shiwalik Foothills of Himalaya, India

2021 ◽  
Vol 13 (3) ◽  
pp. 1398
Author(s):  
Tavjot Kaur ◽  
Simerpreet Kaur Sehgal ◽  
Satnam Singh ◽  
Sandeep Sharma ◽  
Salwinder Singh Dhaliwal ◽  
...  

The present study was conducted to investigate the seasonal effects of five land use systems (LUSs), i.e., wheat–rice (Triticum aestivum—Oryza sativa) system, sugarcane (Saccharum officinarum), orange (Citrus sinensis) orchard, safeda (Eucalyptus globules) forest, and grassland, on soil quality and nutrient status in the lower Satluj basin of the Shiwalik foothills Himalaya, India. Samples were analyzed for assessment of physico-chemical properties at four soil depths, viz., 0–15, 15–30, 30–45, and 45–60 cm. A total of 120 soil samples were collected in both the seasons. Soil texture was found to be sandy loam and slightly alkaline in nature. The relative trend of soil organic carbon (SOC), macro- and micro-nutrient content for the five LUSs was forest > orchard > grassland > wheat–rice > sugarcane, in the pre- and post-monsoon seasons. SOC was highly correlated with macronutrients and micronutrients, whereas SOC was negatively correlated with soil pH (r = −0.818). The surface soil layer (0–15 cm) had a significantly higher content of SOC, and macro- and micro-nutrients compared to the sub-surface soil layers, due to the presence of more organic content in the soil surface layer. Tukey’s multiple comparison test was applied to assess significant difference (p < 0.05) among the five LUSs at four soil depths in both the seasons. Principle component analysis (PCA) identified that SOC and electrical conductivity (EC) were the most contributing soil indicators among the different land use systems, and that the post-monsoon season had better soil quality compared to the pre-monsoon season. These indicators helped in the assessment of soil health and fertility, and to monitor degraded agroecosystems for future soil conservation.

2011 ◽  
Vol 46 (10) ◽  
pp. 1357-1363 ◽  
Author(s):  
Alvadi Antonio Balbinot Junior ◽  
Milton da Veiga ◽  
Anibal de Moraes ◽  
Adelino Pelissari ◽  
Álvaro Luiz Mafra ◽  
...  

The objective of this work was to evaluate the effect of winter land use on the amount of residual straw, the physical soil properties and grain yields of maize, common bean and soybean summer crops cultivated in succession. The experiment was carried out in the North Plateau of Santa Catarina state, Brazil, from May 2006 to April 2010. Five strategies of land use in winter were evaluated: intercropping with black oat + ryegrass + vetch, without grazing and nitrogen (N) fertilization (intercropping cover); the same intercropping, with grazing and 100 kg ha-1 of N per year topdressing (pasture with N); the same intercropping, with grazing and without nitrogen fertilization (pasture without N); oilseed radish, without grazing and nitrogen fertilization (oilseed radish); and natural vegetation, without grazing and nitrogen fertilization (fallow). Intercropping cover produces a greater amount of biomass in the system and, consequently, a greater accumulation of total and particulate organic carbon on the surface soil layer. However, land use in winter does not significantly affect soil physical properties related to soil compaction, nor the grain yield of maize, soybean and common bean cultivated in succession.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0252305
Author(s):  
Leta Hailu ◽  
Gizaw Tesfaye ◽  
Kalkidan Fikirie ◽  
Yalemtsehay Debebe

This study was conducted in Somodo Watershed to investigate the land-use practices and its effect on species diversity and selected soil properties. Field observation was carried out to identify existing land-use practices following a transect line. A total of 20 plots (10 × 10) m2 were sampled from plots exhibiting different land-use practices found in the watershed in order to evaluate species richness and diversity. Soil samples were also collected from each plot. The soil samples were analyzed following standard laboratory procedures. The result of the analysis showed that there was a significant difference (p<0.05) in species diversity and richness among different land-use practices. Coffea arabica was dominant in homestead gardens and natural forests while Grevillea robusta showed had maximum richness in plantations and farm forests in the Watershed. Furthermore, home garden agroforestry practice was significantly (p<0.05) affected soil pH compared to other land-use systems (cultivated land, natural forest, and plantation forest. While Organic carbon (OC), Total nitrogen (TN), and Carbon to Nitrogen ratio (C: N) did not show significance difference among land-use systems in the watershed. The study has concluded that different land-use practices had a positive impact on sustaining species diversity, richness, and improve soil properties. Therefore, the study suggests that improving and expanding home garden agroforestry practices in the area are indispensable for environmental protection and soil fertility enhancement.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Yared Mulat ◽  
Kibebew Kibret ◽  
Bobe Bedadi ◽  
Muktar Mohammed

Abstract Background Soil quality, which can be inferred using indicators that interact synergistically, is affected by land use types and agricultural management practices. This study assessed the status of soil quality under three adjacent land uses (cultivated, grazing, and fallow) in Kersa subwatershed (622 ha). Soil samples were collected from the surface soil (0–20 cm depth) of the identified land uses with three replications and the soil quality parameters were analyzed. A minimum data set of soil quality indicators were selected from physical, chemical, and biological parameters using the literature review and expert opinion method. Linear scoring functions were used to give the unitless scores for the selected data sets, which were then integrated into a soil quality index (SQI). Results The results revealed that bulk density, aggregate stability, pH, cation exchange capacity (CEC), available P, and soil organic carbon (SOC) had a significant difference in SQI among the different land uses. The soil quality indices were 0.69 for grazing land, 0.62 for cultivated land, and 0.59 for the fallow land. The SQI of all the land uses falls in the intermediate soil quality (0.55 < SQI < 0.70) class. Conclusion In almost all the quality indicators assessed, the grazing land was superior to the cultivated and fallow lands. Therefore, implementing management practices that enhance soil quality like organic matter-controlled systems is imperative for sustainable agricultural production in the study area.


2021 ◽  
Author(s):  
Zhi Li ◽  
Yuhuan Xue ◽  
Yue Fang ◽  
Kuiping Li

AbstractUnlike other tropical ocean basins, the Bay of Bengal (BoB) has two tropical cyclone (TC) seasons: a pre-monsoon season (Pre-MS) and a post-monsoon season (Post-MS). More interestingly, during the period from 1981 to 2016, the global maximum and minimum formation rates of super cyclones (SCs, categories 4 and 5) occurred in the Pre-MS and Post-MS, respectively, in the BoB. Methods including Butterworth filter, box difference index analysis and quantitative diagnosis were utilized herein to detect what and how background environmental factors cause significantly different SC formation rates between the Pre- and Post-MS. Diagnosis results revealed that the vertical temperature difference (VTD) mainly determines whether TCs can develop into SCs during the Post-MS, similar to Pre-MS. It’s in agreement with previous studies demonstrating that the VTD is controlled by the low-level temperature during the Post-MS but is determined by the upper-level temperature during the Pre-MS. The results also revealed that the background sea surface temperature is much higher in the Pre-MS than in the Post-MS and forces higher 1000 hPa-level air temperature. Additionally, there is higher saturated specific humidity (qs) due to the higher temperature in the Pre-MS. The differences in the bottom-level temperature and qs cooperate to predominantly contribute to the significant difference in Vpot2, which could denote the maximum potential intensity of TC, eventually leading to the remarkably different SC formation rates between the Pre- and Post-MS in the BoB.


2021 ◽  
Author(s):  
Yared Mulat Tefera ◽  
kibebew Kibret Tehaye ◽  
Bobe Bobe Bedadi ◽  
Muktar Mohammed Kedir

Abstract Background: Soil quality, which can be inferred using indicators that interact synergistically, is affected by land use types and agricultural management practices. This study assessed the status of soil quality under three adjacent land uses (cultivated, grazing, and fallow) in Kersa subwatershed (622 ha). Soil samples were collected from the surface soil (0-20 cm depth) of the identified land uses with three replications and the soil quality parameters were analyzed. A minimum data set of soil quality indicators were selected from physical, chemical, and biological parameters using the literature review and expert opinion method. Linear scoring functions were used to give the unitless scores for the selected data sets, which were then integrated into a soil quality index (SQI).Results: The results revealed that bulk density, aggregate stability, pH, cation exchange capacity (CEC), available P, and soil organic carbon (SOC) had a significant difference in SQI among the different land uses. The soil quality indices were 0.69 for grazing land, 0.62 for cultivated land, and 0.59 for the fallow land. The SQI of all the land uses falls in the intermediate soil quality (0.55 < SQI < 0.70) class.Conclusion: In almost all the quality indicators assessed, the grazing land was superior to the cultivated and fallow lands. Therefore, implementing management practices that enhance soil quality like organic matter-controlled systems is imperative for sustainable agricultural production in the study area.


Author(s):  
Paramesh Venkatesh ◽  
SURENDRA SINGH ◽  
Deepak Mohekar ◽  
Vadivel Arunachalam ◽  
Shiva Misra ◽  
...  

The evaluation of sustainable land management practices is imperative under particular soil type, climate, and cropping sequence following area-specific best management practices. The alternative land-use system (ALUS-natural forest, pasture, cashew, areca nut, coconut) on hills and agricultural land-use system (AGLUS-rice-rice, rice-pulse) in the coastal plains of west coast India was evaluated in this study. The present study assessed the impact of sustainable land-use management practices on different fractions of SOC and soil quality under ALUS and AGLUS. The total SOC stocks under different land-use systems varied from 14.4 Mg ha−1 in rice–rice rotations to 133.7 Mg ha−1 in cashew and more than 75% of total SOC stock were found as a passive carbon pool. The higher lability index, available nutrients, and biochemical properties were found in ALUS. This variation in the levels of SOC and soil quality was due to land use and management practices. The results indicated land use with areca nut (0.8) on the hills and rice–pulses (0.25) rotations on the coast had maintained soil quality of high order. On upscaling the different land-use systems by growing cashew, areca nut, coconut, pasture, and rice-pulses rotations, SOC stocks of Goa can increase from 6.33 Tg at present to 32 Tg. We recommend promoting sustainable agriculture with ALUS on the hills and with AGLUS on the coastal plains of Goa for enhancing SOC sequestration and improving soil quality.


Author(s):  
B. O. Adebo ◽  
A. O. Aweto ◽  
K. Ogedengbe

Soil quality in an agroecosytem is considerably influenced by land use and management practices. Twenty two potential soil quality indicators were used to assess the effects of five different land use types (arable land, plantation, agroforestry, marginal land and native forest) on soil quality in Akufo and Atan farm settlements in Ibadan, southwestern Nigeria. A total of sixty-two fields were selected from which soil samples were taken at a depth of 0-15 cm and subjected to laboratory analysis. Majority of the evaluated physicochemical properties varied significantly among the land uses and whereas native land performed relatively better for most of the observed attributes, arable and marginal lands performed worse. Due to the moderate to strong significant correlation among the potential indicators, they were subjected to principal component analysis and only seven indicators were selected to compute the soil quality index (SQI). In both Akufo and Atan, native land had the highest SQI (0.8250 and 0.860 respectively) which was significantly different (P = .05) from all the agricultural land uses, except plantation (0.739 and 0.750 respectively). Whereas marginal field in Atan was most degraded (SQI = 0.455), it was closely followed by arable fields in both locations. This study indicates that the current agricultural land use and soil management practices in Akufo and Atan farm settlements have negatively impacted soil quality; however, the degree of degradation was strongly influenced by the concentration of soil organic carbon in the understudied land use systems. It also emphasizes the need to promote the use of sustainable management practices among agricultural land users, so as to increase soil organic carbon stock, and improve soil quality and land productivity.


Sign in / Sign up

Export Citation Format

Share Document