Soil organic matter and nutrient improvement through cover crops in a Mediterranean olive orchard

2021 ◽  
Vol 210 ◽  
pp. 104977
Author(s):  
Miguel A. Repullo-Ruibérriz de Torres ◽  
Rosa M. Carbonell-Bojollo ◽  
Manuel Moreno-García ◽  
Rafaela Ordóñez-Fernández ◽  
Antonio Rodríguez-Lizana
2021 ◽  
Author(s):  
Arminda Moreira de Carvalho ◽  
Luana Ramos Passos Ribeiro ◽  
Robélio Leandro Marchão ◽  
Alexsandra Duarte de Oliveira ◽  
Karina Pulrolnik ◽  
...  

2012 ◽  
Vol 58 (sup1) ◽  
pp. SS95-SS102 ◽  
Author(s):  
Fernando Peregrina ◽  
Eva Pilar Pérez-Álvarez ◽  
Mikel Colina ◽  
Enrique García-Escudero

2020 ◽  
Author(s):  
Kurt-Christian Kersebaum ◽  
Susanne Schulz ◽  
Evelyn Wallor

<p>Climate change impact on crop production depends on the cultivated crop and its position within crop rotations and on site conditions, e.g. soils and hydrology, buffering adverse weather situations. We present a regional study across the federal state of Brandenburg/Germany based on gridded climate data and a digital soil map using the HERMES-to-Go model. The aim was to investigate defined crop rotations and common agricultural practices under current and future climate conditions regarding productivity and environmental effects. Two contrasting GCMs (HAD and MPI) were used to generate climate input for modelling for the RCPs 2.6 and 8.5.</p><p>5 different types of crop production were simulated by defining crop rotations over 4-5 years for soil quality rating groups. While one rotation is comprised by the most common crops, another rotation modifies the first one by introducing a legume followed by a more demanding crop. The third rotation intends to produce higher value crops, e.g. potatoes than the first one, while the fourth rotation has its focus on fodder grass and cereal production. Building on this the fifth rotation replaces the fodder grass by alfalfa. All rotations are simulated in shifted phases to ensure that each crop is simulated for each year.</p><p>Sowing, harvest and nitrogen fertilization were derived by algorithms based on soil and climate information to allow self-adaptation to changing climate conditions. The crop rotations are simulated under rainfed and irrigated conditions and with and without the implementation of cover crops to prevent winter fallow.</p><p>We used the digital soil map 1:300.000 for Brandenburg with 99 soil map units. Within the soil map unit, up to three dominant soil types were considered to achieve at least 65% coverage. 276 soil types are defined by their soil profiles including soil organic matter content and texture down to 2 meters. Groundwater levels are estimated using the depth of reduction horizons as constant values over the year, to consider capillary rise depending on soil texture and distance between the root zone and the groundwater table.</p><p>In total each climate scenario contains about 148.000 simulations of 30 years. Beside crop yields we analyse the outputs for trends in soil organic matter, groundwater recharge, nitrogen leaching and the effect on water and nitrogen management using algorithms for automatic management.</p><p>Results indicate that spring crops were more negatively affected by climate change than winter crops especially on soils with low water holding capacity. However, few areas with more loamy soils and potential contribution of capillary rise from a shallow groundwater even benefited from climate change. Irrigation in most cases improved crop yield especially for spring crops. However, further analysis is required to assess if irrigation gains an economic benefit for all crop rotations. Nitrogen leaching can be reduced by implementing winter cover crops. Soil organic matter is assessed to decline for most sites and rotations. Only the rotations with multiyear grass or alfalfa can keep the level, but not on all sites.</p>


2016 ◽  
Vol 156 ◽  
pp. 33-43 ◽  
Author(s):  
Daniel Plaza-Bonilla ◽  
Jean-Marie Nolot ◽  
Sixtine Passot ◽  
Didier Raffaillac ◽  
Eric Justes

EDIS ◽  
2007 ◽  
Vol 2007 (20) ◽  
Author(s):  
Yoana C. Newman ◽  
David L. Wright ◽  
Cheryl Mackowiak ◽  
J.M.S. Scholberg ◽  
C. M. Cherr

SS-AGR-272, a 4-page fact sheet by Y.C. Newman, D.W. Wright, C. Mackowiak, J.M.S. Scholberg and C.M. Cherr, discusses the benefits of cover crops in agricultural production, the benefits of soil organic matter; how to match cover crop nutrient release with future crop demand; timing and depth of residue incorporation; and erosion, pest and weed control. Includes references. Published by the UF Department of Agronomy, November 2007. SS AGR 272/AG277: Benefits of Cover Crops for Soil Health (ufl.edu)


2015 ◽  
Vol 153 ◽  
pp. 169-174 ◽  
Author(s):  
Bruno Henrique Martins ◽  
Cezar Francisco Araujo-Junior ◽  
Mario Miyazawa ◽  
Karen Mayara Vieira ◽  
Debora M.B.P. Milori

2019 ◽  
Vol 16 (14) ◽  
pp. 2795-2819 ◽  
Author(s):  
Sissel Hansen ◽  
Randi Berland Frøseth ◽  
Maria Stenberg ◽  
Jarosław Stalenga ◽  
Jørgen E. Olesen ◽  
...  

Abstract. The emissions of nitrous oxide (N2O) and leaching of nitrate (NO3) from agricultural cropping systems have considerable negative impacts on climate and the environment. Although these environmental burdens are less per unit area in organic than in non-organic production on average, they are roughly similar per unit of product. If organic farming is to maintain its goal of being environmentally friendly, these loadings must be addressed. We discuss the impact of possible drivers of N2O emissions and NO3 leaching within organic arable farming practice under European climatic conditions, and potential strategies to reduce these. Organic arable crop rotations are generally diverse with the frequent use of legumes, intercropping and organic fertilisers. The soil organic matter content and the share of active organic matter, soil structure, microbial and faunal activity are higher in such diverse rotations, and the yields are lower, than in non-organic arable cropping systems based on less diverse systems and inorganic fertilisers. Soil mineral nitrogen (SMN), N2O emissions and NO3 leaching are low under growing crops, but there is the potential for SMN accumulation and losses after crop termination, harvest or senescence. The risk of high N2O fluxes increases when large amounts of herbage or organic fertilisers with readily available nitrogen (N) and degradable carbon are incorporated into the soil or left on the surface. Freezing/thawing, drying/rewetting, compacted and/or wet soil and mechanical mixing of crop residues into the soil further enhance the risk of high N2O fluxes. N derived from soil organic matter (background emissions) does, however, seem to be the most important driver for N2O emission from organic arable crop rotations, and the correlation between yearly total N-input and N2O emissions is weak. Incorporation of N-rich plant residues or mechanical weeding followed by bare fallow conditions increases the risk of NO3 leaching. In contrast, strategic use of deep-rooted crops with long growing seasons or effective cover crops in the rotation reduces NO3 leaching risk. Enhanced recycling of herbage from green manures, crop residues and cover crops through biogas or composting may increase N efficiency and reduce N2O emissions and NO3 leaching. Mixtures of legumes (e.g. clover or vetch) and non-legumes (e.g. grasses or Brassica species) are as efficient cover crops for reducing NO3 leaching as monocultures of non-legume species. Continued regular use of cover crops has the potential to reduce NO3 leaching and enhance soil organic matter but may enhance N2O emissions. There is a need to optimise the use of crops and cover crops to enhance the synchrony of mineralisation with crop N uptake to enhance crop productivity, and this will concurrently reduce the long-term risks of NO3 leaching and N2O emissions.


2016 ◽  
Vol 10 (04) ◽  
pp. 503-512 ◽  
Author(s):  
Simone Cândido Ensinas ◽  
◽  
Ademar Pereira Serra ◽  
Marlene Estevão Marchetti ◽  
Eulene Francisco da Silva ◽  
...  

Agriculture ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 145 ◽  
Author(s):  
Roberto Mancinelli ◽  
Rosario Muleo ◽  
Sara Marinari ◽  
Emanuele Radicetti

Ecological intensification, based on agricultural practices that promote ecosystem services, has been recently proposed to match crop yield and environmental concerns. Two-year experiments were conducted in a Mediterranean environment. The treatments were: (i) four intensification levels (common vetch (CV), ryegrass (RG), bare soil without Nitrogen (N) fertilization (Control-N0) and with 100 kg ha−1 of N fertilization (Control-N100) applied during pepper cultivation), and(ii) two soil tillage [soil tillage at 15 cm and 30 cm of soil depth (ST-15 and ST-30, respectively)]. The field experiment was disposed in a randomized block design with three replications. Cover crop, soil samples, and pepper samples were collected for analysis. Soil available nitrogen increased after soil tillage, especially in CV, which showed the highest fruit yield. The reduced soil N availability in RG decreased fruit yield and N uptake. The agro-physiological efficiency of pepper was similar in common vetch and Control-N100, while it was low in ryegrass. However, the adoption of RG increased the soil organic matter more than both control treatments, which, in turn, caused a depletion of soil organic matter. Moreover, reduced tillage practices for green manuring that both cover crops arepreferable to reduce external inputs in terms of fuel saving and farming operations.


Sign in / Sign up

Export Citation Format

Share Document