Net field global warming potential and greenhouse gas intensity in typical arid cropping systems of China: A 3-year field measurement from long-term fertilizer experiments

2021 ◽  
Vol 212 ◽  
pp. 105053
Author(s):  
Jinling Lv ◽  
Xinhua Yin ◽  
Chris Dorich ◽  
Rodrigo Olave ◽  
Xihe Wang ◽  
...  
2021 ◽  
Vol 21 (6) ◽  
pp. 4699-4708
Author(s):  
Ian Enting ◽  
Nathan Clisby

Abstract. Many metrics for comparing greenhouse gas emissions can be expressed as an instantaneous global warming potential multiplied by the ratio of airborne fractions calculated in various ways. The forcing equivalent index (FEI) provides a specification for equal radiative forcing at all times at the expense of generally precluding point-by-point equivalence over time. The FEI can be expressed in terms of asymptotic airborne fractions for exponentially growing emissions. This provides a reference against which other metrics can be compared. Four other equivalence metrics are evaluated in terms of how closely they match the timescale dependence of FEI, with methane referenced to carbon dioxide used as an example. The 100-year global warming potential overestimates the long-term role of methane, while metrics based on rates of change overestimate the short-term contribution. A recently proposed metric based on differences between methane emissions 20 years apart provides a good compromise. Analysis of the timescale dependence of metrics expressed as Laplace transforms leads to an alternative metric that gives closer agreement with FEI at the expense of considering methane over longer time periods. The short-term behaviour, which is important when metrics are used for emissions trading, is illustrated with simple examples for the four metrics.


Sign in / Sign up

Export Citation Format

Share Document