A significant improvement of the wear resistance of Ti6Al4V alloy by a combined method of magnetron sputtering and plasma electrolytic oxidation (PEO)

2019 ◽  
Vol 358 ◽  
pp. 879-890 ◽  
Author(s):  
Shi-hang Kang ◽  
Wen-bin Tu ◽  
Jun-xiang Han ◽  
Zhi Li ◽  
Ying-liang Cheng
Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1288
Author(s):  
Mingzeng Shao ◽  
Wei Wang ◽  
Hongbo Yang ◽  
Xueer Zhang ◽  
Xiaomei He

In order to improve the wear resistance of Ti6Al4V alloy, the alloy was first coated with alumina-reinforced aluminum coating (CS-coating) by cold spraying, and then the alloy with CS-coating was processed by plasma electrolytic oxidation (PEO) under unipolar mode and soft sparking mode, respectively, to prepare wear-resistant PEO coatings. For comparison, Ti6Al4V alloy without CS-coating was also subjected to PEO treatment. The microstructure, phase composition, hardness, and wear resistance of the PEO coatings formed on Ti6Al4V alloy with and without CS-coating were investigated. The results revealed that PEO coatings formed on Ti6Al4V alloy with CS-coating under soft sparking mode contained more α-Al2O3, possessed larger thickness, more compact microstructure, and higher microhardness than that formed under unipolar mode. The PEO coating formed on Ti6Al4V substrate was mainly composed of TiO2 and had pores and cracks. Among all these coatings, PEO coating formed on Ti6Al4V alloy with CS-coating under soft sparking mode exhibited the best wear resistance with a wear rate of 1.18 × 10−5 mm3/(Nm), which was only 15.28% of that of the Ti6Al4V substrate. The investigation indicated that the combination of cold spraying and PEO under soft sparking mode is a promising technique for improving the wear resistance of titanium alloy.


2020 ◽  
Vol 31 (1) ◽  
pp. 015004
Author(s):  
Yizhong Hu ◽  
Jianbing Meng ◽  
Xiaosheng Luan ◽  
Xiaojuan Dong ◽  
Haian Zhou ◽  
...  

2016 ◽  
Vol 16 (1) ◽  
pp. 5-16 ◽  
Author(s):  
K. Rokosz ◽  
T. Hryniewicz ◽  
W. Malorny

Abstract The SEM and EDS results of coatings obtained on pure niobium and titanium alloys (NiTi and Ti6Al4V) by Plasma Electrolytic Oxidation in the electrolytes containing of 300 g and 600 g copper nitrate in 1 litre of concentrated phosphoric acid at 450 V for 3 minutes, are presented. The obtained coatings are porous and consist mainly of phosphorus within titanium and copper. For each coating, the Cu/P ratios were calculated. The maximum of that coefficient was found for niobium and Ti6Al4V alloy oxidised in the electrolyte containing 600 g of Cu(NO3)2 in 1 dm3 of H3PO4 and equaling to 0.22 (wt%) | 0.11 (at%). The minimum of Cu/P ratio was recorded for NiTi and Ti6Al4V alloys oxidised by PEO in electrolyte consisting of 300 g of copper nitrate in 1 dm3 of concentrated phosphoric acid and equals to 0.12 (wt%) | 0.06 (at%). The middle value of that ratio was recorded for NiTi and it equals to 0.16 (wt%) | 0.08 (at%).


2021 ◽  
Vol 8 (6) ◽  
pp. 974-989
Author(s):  
Jie Sun ◽  
◽  
Tzvetanka Boiadjieva-Scherzer ◽  
Hermann Kronberger ◽  

<abstract> <p>To imitate the superior biocompatibility of Ti–Zr alloys at reduced cost, conventional Ti6Al4V alloy was modified via plasma electrolytic oxidation (PEO). The influence of different additives on the phase composition and topography was investigated in acidic electrolytes containing Zr(SO<sub>4</sub>)<sub>2</sub>·H<sub>2</sub>O with potentiostatically controlled PEO at different pulse frequencies. Apart from the primary intention to generate Zr enriched phases, formation and incorporation in the ceramic layer of potential antibacterial Cu and Zn species was achieved and examined by X-ray diffraction. The thickness of the oxide layer, the adhesion and the layers' composition were evaluated using FIB and SEM-EDX.</p> </abstract>


Coatings ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 614 ◽  
Author(s):  
Bertuccioli ◽  
Garzoni ◽  
Martini ◽  
Morri ◽  
Rondelli

Plasma Electrolytic Oxidation (PEO) layers were produced on Ti-6Al-4V in different conditions, so as to assess the influence of layer structure, current mode, duty cycle and surface finishing on microstructural features and tribological behaviour. In DC regime, the double-layer structure (silicate bath followed by phosphate bath) beneficially affected wear resistance. In unipolar pulsed DC (phosphate bath), the wear resistance of single layers improved with increasing duty cycle, due to improved microstructure and adhesion: high duty cycle single layers can be considered an alternative to double-layer deposition. Surface finishing by abrasive blasting with spheroidal glass beads leads to surface roughness decrease and hence to decreased friction and improved wear resistance. The best-performing PEO layers showed promising results in the comparison with reference materials such as CoCrMo (both uncoated and (Ti,Nb)N PVD-coated) and PVD-coated Ti-6Al-4V up to 30 N normal load.


Sign in / Sign up

Export Citation Format

Share Document