A novel stochastic fractal search algorithm with fitness-Distance balance for global numerical optimization

2021 ◽  
Vol 61 ◽  
pp. 100821
Author(s):  
Sefa Aras ◽  
Eyüp Gedikli ◽  
Hamdi Tolga Kahraman
2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Fran Sérgio Lobato ◽  
Gustavo Barbosa Libotte ◽  
Gustavo Mendes Platt

Traditionally, the identification of parameters in the formulation and solution of inverse problems considers that models, variables, and mathematical parameters are free of uncertainties. This aspect simplifies the estimation process, but does not consider the influence of relatively small changes in the design variables in terms of the objective function. In this work, the SIDR (Susceptible, Infected, Dead, and Recovered) model is used to simulate the dynamic behavior of the novel coronavirus disease (COVID-19), and its parameters are estimated by formulating a robust inverse problem, that is, considering the sensitivity of design variables. For this purpose, a robust multiobjective optimization problem is formulated, considering the minimization of uncertainties associated with the estimation process and the maximization of the robustness parameter. To solve this problem, the Multiobjective Stochastic Fractal Search algorithm is associated with the Effective Mean concept for the evaluation of robustness. The results obtained considering real data of the epidemic in China demonstrate that the evaluation of the sensitivity of the design variables can provide more reliable results.


2017 ◽  
Vol 2017 ◽  
pp. 1-14
Author(s):  
Qifang Luo ◽  
Sen Zhang ◽  
Yongquan Zhou

Template matching is a basic and crucial process for image processing. In this paper, a hybrid method of stochastic fractal search (SFS) and lateral inhibition (LI) is proposed to solve complicated template matching problems. The proposed template matching technique is called LI-SFS. SFS is a new metaheuristic algorithm inspired by random fractals. Furthermore, lateral inhibition mechanism has been verified to have good effects on image edge extraction and image enhancement. In this work, lateral inhibition is employed for image preprocessing. LI-SFS takes both the advantages of SFS and lateral inhibition which leads to better performance. Our simulation results show that LI-SFS is more effective and robust for this template matching mission than other algorithms based on LI.


Sign in / Sign up

Export Citation Format

Share Document