Stable controller design for mixed sensitivity reduction of infinite-dimensional systems

2014 ◽  
Vol 72 ◽  
pp. 80-85 ◽  
Author(s):  
Masashi Wakaiki ◽  
Yutaka Yamamoto
Author(s):  
Werner Haas ◽  
Michael Krommer ◽  
Hans Irschik

Abstract Linear Hamiltonian control systems with collocation of sensor and actuator are considered. Based on a frequency domain approach a controller design algorithm is stated. The design leads to a controller with internal dynamics which uses the output of the system and its first time derivative. The presence of internal dynamics in the controller is an extension of the usual PD–control law and a main result of the work. The design is based on the special properties of the proposed class of systems. In particular, these Hamiltonian systems are passive. It is shown that the design leads to strictly passive controllers for a certain choice of the design parameters. This is another significant result and offers a way for robust ℒ2–stabilization even in the case of infinite dimensional systems. Some features of the controller design are discussed with respect to an application, the control of a composite circular plate.


Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1854
Author(s):  
Eduardo Cruz-Quintero ◽  
Francisco Jurado

There are physical phenomena, involving diffusion and structural vibrations, modeled by partial differential equations (PDEs) whose solution reflects their spatial distribution. Systems whose dynamics evolve on an infinite-dimensional Hilbert space, i.e., infinite-dimensional systems, are modeled by PDEs. The aim when designing a controller for infinite-dimensional systems is similar to that for finite-dimensional systems, i.e., the control system must be stable. Another common goal is to design the controller in such a way that the response of the system does not be affected by external disturbances. The controller design for finite-dimensional systems is not an easy task, so, the controller design for infinite-dimensional systems is even more challenging. The backstepping control approach is a dominant methodology for boundary feedback design. In this work, we try with the backstepping design for the boundary control of a reaction-advection-diffusion (R-A-D) equation, namely, a type parabolic PDE, but with constant coefficients and Neumann boundary conditions, with actuation in one of these latter. The heat equation with Neumann boundary conditions is considered as the target system. Dynamics of the open- and closed-loop solution of the PDE system are validated via numerical simulation. The MATLAB®-based numerical algorithm related with the implementation of the control scheme is here included.


Author(s):  
Berk Altıner ◽  
Akın Delibaşı ◽  
Bilal Erol

Flexible link manipulators are mostly prefered in applications where energy consumption and faster operation are critically important. Since distributed nature of flexibility makes the system depend on not only time variable but also a spatial variable, the dynamics of flexible structures are expressed by partial differential equations. In the virtue of this kind of modeling, the designers encounter with infinite dimensional systems which means that the system has an infinite number of degrees of freedom. To cope with infinite dimensional systems, one of the most relevant techniques is to truncate the model into a definite order. However, this may yield the unmodeled dynamics that cause performance degradation and even instability. In this paper, the main motivation is to propose control techniques to compensate unwanted effects of unmodeled dynamics which may occur in truncation process. In order to achieve this goal, the linear quadratic Gaussian and the weighted [Formula: see text] controller design are adopted. The performances of the designed controllers are demonstrated on the experimental setup. Besides this motivation, traditional lumped parameter model of the flexible link manipulator which is widely seen in the literature is considered and the superiority of the partial differential equation model is shown on the experimental setup.


Author(s):  
Kurt Schlacher ◽  
Andreas Kugi

Abstract Intelligent mechanical structures based on piezoelectricity form an important new group of actuators and sensors for active vibration control. Since this technology allows to construct spatially distributed devices, new design possibilities for the control systems open up. Now the design of the spatially distributed sensors and actuators becomes part of the controller design itself. Several well established approaches, like the PD-, H2- and H∞-design are adapted to solve this problem. They are based on infinite dimensional Hamiltonian systems in conjunction with collocated actuator and sensor pairing. Since this approach is based on the so called Poisson bracket only, one can unify the controller design for finite and for infinite dimensional systems. Of course, the stability investigations are much more complicated in the latter case. Finally, applications to beams and plates demonstrate the power and effectiveness of the proposed methods.


Sign in / Sign up

Export Citation Format

Share Document