Stabilization of Mechanical Structures With Distributed Sensors and Actuators: A Hamiltonian Approach

Author(s):  
Kurt Schlacher ◽  
Andreas Kugi

Abstract Intelligent mechanical structures based on piezoelectricity form an important new group of actuators and sensors for active vibration control. Since this technology allows to construct spatially distributed devices, new design possibilities for the control systems open up. Now the design of the spatially distributed sensors and actuators becomes part of the controller design itself. Several well established approaches, like the PD-, H2- and H∞-design are adapted to solve this problem. They are based on infinite dimensional Hamiltonian systems in conjunction with collocated actuator and sensor pairing. Since this approach is based on the so called Poisson bracket only, one can unify the controller design for finite and for infinite dimensional systems. Of course, the stability investigations are much more complicated in the latter case. Finally, applications to beams and plates demonstrate the power and effectiveness of the proposed methods.

Author(s):  
Andreas Kugi ◽  
Kurt Schlacher ◽  
Hans Irschik

Abstract This contribution is focused on a straight composite beam with multiple piezoelectric layers under the action of an axial support motion. In the sense of v. Karman a nonlinear formulation for the axial strain is used and the equations of motion are derived by means of the Hamilton formalism. This system turns out to be a special class of infinite dimensional systems, the so called Hamilton AI-systems with external inputs. In order to suppress the excited vibrations two infinite control laws are proposed. The first one is an infinite PD-feedback law and the second one is based on the nonlinear H∞-design, where an exact solution of the corresponding Hamilton Jacobi Isaacs equation is presented. The necessary quantities for the control laws can be measured by appropriate space-wise shaped sensors and the asymptotic stability of the equilibrium point can be proved.


Author(s):  
Ehsan Omidi ◽  
S. Nima Mahmoodi

This paper discusses the concept of a new methodology for active vibration control of flexible structures using consensus control of network systems. In the new approach, collocated actuation/sensingpatches communicate with one another through a network with certain directed topology. A virtual leader is assigned to enforce the vibration amplitude at the place of each agent to zero. Since the modal states of the system are not available for the vibration control task, individual optimal observers are designed for each agent first. After describing the controller and examining the stability of the system, controller performance is verified using a clamped-clamped thin aluminum beam. According to the obtained numerical results, the new control approach successfully suppresses the vibration amplitudes, while the consensus design ensures that all agents are synchronized during the performance.


Author(s):  
Young-Tai Choi ◽  
Norman M. Wereley ◽  
Gregory J. Hiemenz

Novel semi-active vibration controllers are developed in this study for magnetorheological (MR) fluid-based vibration control systems, including: (1) a band-pass frequency shaped semi-active control algorithm, (2) a narrow-band frequency shaped semi-active control algorithm. These semi-active vibration control algorithms designed without resorting to the implementation of an active vibration control algorithms upon which is superposed the energy dissipation constraint. These new Frequency Shaped Semi-active Control (FSSC) algorithms require neither an accurate damper (or actuator) model, nor system identification of damper model parameters for determining control current input. In the design procedure for the FSSC algorithms, the semi-active MR damper is not treated as an active force producing actuator, but rather is treated in the design process as a semi-active dissipative device. The control signal from the FSSC algorithms is a control current, and not a control force as is typically done for active controllers. In this study, two FSSC algorithms are formulated and performance of each is assessed via simulation. Performance of the FSSC vibration controllers is evaluated using a single-degree-of-freedom (DOF) MR fluid-based engine mount system. To better understand the control characteristics and advantages of the two FSSC algorithms, the vibration mitigation performance of a semi-active skyhook control algorithm, which is the classical semi-active controller used in base excitation problems, is compared to the two FSSC algorithms.


2005 ◽  
Vol 128 (2) ◽  
pp. 256-260 ◽  
Author(s):  
Xianmin Zhang ◽  
Arthur G. Erdman

The optimal placement of sensors and actuators in active vibration control of flexible linkage mechanisms is studied. First, the vibration control model of the flexible mechanism is introduced. Second, based on the concept of the controllability and the observability of the controlled subsystem and the residual subsystem, the optimal model is developed aiming at the maximization of the controllability and the observability of the controlled modes and minimization of those of the residual modes. Finally, a numerical example is presented, which shows that the proposed method is feasible. Simulation analysis shows that to achieve the same control effect, the control system is easier to realize if the sensors and actuators are located in the optimal positions.


Sign in / Sign up

Export Citation Format

Share Document