Measurement above the carina of FiO2 and Positive Pressure changes using different HFNO rates.

2020 ◽  
Vol 30 ◽  
pp. e71-e72
Author(s):  
Jose Luis Soriano-Bru ◽  
Jaume Puig ◽  
Juan Catala Bauset
1979 ◽  
Vol 88 (3) ◽  
pp. 368-376 ◽  
Author(s):  
A. Axelsson ◽  
J. Miller ◽  
M. Silverman

Acute middle ear (ME) and inner ear changes following brief unilateral phasic ME pressure changes (up to ± 6000/mm H2O) were studied in the guinea pig. Middle ear findings included perforation of the tympanic membrane, serous and serosanguinous exudate and hemorrhage of tympanic membrane and periosteal vessels. Changes were related to magnitude of applied pressure. Perforation and hemorrhage were more commonly seen with negative rather than positive pressure. Air bubbles behind the round window were seen with positive pressures. Occasional distortion, but never perforation of the round window, was noted. Hemorrhage of the scala tympani was observed with both positive and negative pressures; scala vestibuli hemorrhage was found with negative ME pressure. In some instances pressure direction and magnitude related changes were seen in the contralateral ear.


1988 ◽  
Vol 97 (2) ◽  
pp. 199-206 ◽  
Author(s):  
Yehuda Finkelstein ◽  
Yuval Zohar ◽  
Yoav P. Talmi ◽  
Nelu Laurian

The Toynbee maneuver, swallowing when the nose is obstructed, leads in most cases to pressure changes in one or both middle ears, resulting in a sensation of fullness. Since first described, many varying and contradictory comments have been reported in the literature concerning the type and amount of pressure changes both in the nasopharynx and in the middle ear. In our study, the pressure changes were determined by catheters placed into the nasopharynx and repeated tympanometric measurements. New information concerning the rapid pressure variations in the nasopharynx and middle ear during deglutition with an obstructed nose was obtained. Typical individual nasopharyngeal pressure change patterns were recorded, ranging from a maximal positive pressure of + 450 to a negative pressure as low as −320 mm H2O.


1969 ◽  
Vol 51 (1) ◽  
pp. 203-220
Author(s):  
G. M. HUGHES ◽  
B. KNIGHTS ◽  
C. A. SCAMMELL

1. A technique is described for replacing part of the branchiostegite of Carcinus maenas by a transparent plastic ‘window’ for direct observation of the gills in situ with minimum disturbance. 2. Observation of dye streams shows that most water enters the hypobranchial space through the Milne-Edwards openings above the chelae, flowing anteriorly and/or posteriorly to ventilate most of gills 3-8. Water also enters above the pereiopods to ventilate the rest of the gills. Water passes from the hypobranchial to the epibranchial space, confirming that there is a counterflow with respect to the circulation of blood through the gill lamellae. 3. By sampling water at different points in the branchial system, patterns of oxygen removal were studied. The gradients confirmed the direction of water flow observed by the use of dyes. 4. Rhythmic changes in hydrostatic pressure in normal forward-pumping of 3-12 mm. H2O were recorded from the branchial cavities, superimposed on a maintained negative pressure relative to that outside the crab of 0-10 mm. H2O. Reversals produced a brief positive pressure change of 0-22 mm. H2O. 5. The possible relationships of the rhythmic pressure changes to scaphognathite movements are discussed. 6. The role of reversals is discussed and it is concluded that their primary function during ventilation is in helping to clean the ventrally facing gill surfaces. But they are also important in respiration under certain special conditions which arise during the normal life of the animal. 7. The utilization of O2 during its passage over the gills is low (7-23%) in spite of the counterflow. Possible explanations of this are discussed in relation to a model of the whole ventilation system.


1979 ◽  
Vol 7 (2) ◽  
pp. 152-157 ◽  
Author(s):  
W. R. Thompson ◽  
T. E. Oh

Increases in endotracheal tube cuff volume and pressure during anaesthesia have been reported to be due to the diffusion of nitrous oxide into the cuff. This study compared cuff volume and pressure changes in anaesthetized intubated patients who were ventilated with those allowed to breath spontaneously. The cuffs of Magill red rubber endotracheal tubes were inflated with either air or a nitrous oxide-oxygen mixture. Serial pressure and volume recordings confirmed that both parameters increased when the cuff was inflated with air. The increase in cuff pressure was however, greater during intermittent positive pressure ventilation than for spontaneous respiration. There were no significant changes when the cuff was inflated with the nitrous oxide-oxygen mixture.


2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
Caroline C. Jadlowiec ◽  
Lois U. Sakorafas

Traumatic diaphragmatic hernias are rare and challenging to diagnose. Following trauma, diagnosis may occur immediately or in a delayed fashion. It is believed that left traumatic diaphragmatic hernias are more common as a result of the protective right-sided anatomic lie of the liver. If unrecognized, traumatic diaphragmatic injuries are subject to enlarge over time as a result of the normal pressure changes observed between the thoracic and abdominal cavities. Additionally, abrupt changes to the pressure gradients, such as those which occur with positive pressure ventilation or surgical manipulation of the abdominal wall, can act as a nidus for making an asymptomatic hernia symptomatic. We report our experience with a delayed traumatic right-sided diaphragmatic hernia presenting with large bowel incarceration two months after abdominoplasty. In our review of the literature, we were unable to find any reports of delayed presentation of a traumatic right-sided diaphragmatic hernia occurring acutely following abdominoplasty.


1992 ◽  
Vol 73 (6) ◽  
pp. 2408-2412 ◽  
Author(s):  
S. R. Muza ◽  
G. J. Criner ◽  
S. G. Kelsen

Lung volume influences the mechanical action of the primary inspiratory and expiratory muscles by affecting their precontraction length, alignment with the rib cage, and mechanical coupling to agonistic and antagonistic muscles. We have previously shown that the canine pectoral muscles exert an expiratory action on the rib cage when the forelimbs are at the torso's side and an inspiratory action when the forelimbs are held elevated. To determine the effect of lung volume on intrathoracic pressure changes produced by the canine pectoral muscles, we performed isolated bilateral supramaximal electrical stimulation of the deep pectoral and superficial pectoralis (descending and transverse heads) muscles in 15 adult supine anesthetized dogs during hyperventilation-induced apnea. Lung volume was altered by application of a negative or positive pressure (+/- 30 cmH2O) to the airway. In all animals, selective electrical stimulation of the descending, transverse, and deep pectoral muscles with the forelimbs held elevated produced negative intrathoracic pressure changes (i.e., an inspiratory action). Moreover, with the forelimbs elevated, increasing lung volume decreased both pectoral muscle fiber precontraction length and the negative intrathoracic pressure changes generated by contraction of each of these muscles. Conversely, with the forelimbs along the torso, increasing lung volume lengthened pectoral muscle precontraction length and augmented the positive intrathoracic pressure changes produced by muscle contraction (i.e., an expiratory action). These results indicate that lung volume significantly affects the length of the canine pectoral muscles and their mechanical actions on the rib cage.


1992 ◽  
Vol 262 (3) ◽  
pp. H625-H634 ◽  
Author(s):  
M. J. Davis ◽  
X. Shi ◽  
P. J. Sikes

We tested the hypothesis that the frequency and amplitude of spontaneous venular contractions in the bat wing could be modulated by changes in transmural pressure. In one series of experiments, venous pressure in the wing was elevated by pressurizing a box containing the body of the animal while the wing was exposed to atmospheric pressure. During this time, venular diameters were continuously recorded using intravital microscopic techniques while venular pressures were measured through servo-null micropipettes. In another series of experiments, single venular segments were dissected from the wing, cannulated, and pressurized in vitro. The results from both experimental protocols were qualitatively similar; alterations in venous pressure over a narrow range (+/- 5 cmH2O from control) produced substantial changes in contraction frequency and amplitude. The product of frequency and cross-sectional area was maximal over the venous pressure range between 10 and 15 cmH2O. Venules demonstrated a rate-sensitive component in their reaction to rapid pressure changes, because contraction bursts occurred immediately after positive pressure steps and quiescent periods often occurred after negative pressure steps. We conclude that venular vasomotion in the bat wing is modulated by intraluminal pressure and involves a bidirectional, rate-sensitive mechanism. In addition, comparisons with arteriolar vasomotion studies suggest that venules are more sensitive to luminal pressure changes than arterioles.


2002 ◽  
Vol 93 (6) ◽  
pp. 2137-2146 ◽  
Author(s):  
Mary E. J. Lott ◽  
Michael D. Herr ◽  
Lawrence I. Sinoway

The effects of changes in transmural pressure on brachial artery mean blood velocity (MBV) were examined in humans. Transmural pressure was altered by using a specially designed pressure tank that raised or lowered forearm pressure by 50 mmHg within 0.2 s. Brachial MBV was measured with Doppler directly above the site of forearm pressure change. Pressure changes were evoked during resting conditions and after a 5-s handgrip contraction at 25% maximal voluntary contraction. The handgrip protocol selected was sufficiently vigorous to limit flow and sufficiently brief to prevent autonomic engagement. Changes in transmural pressure evoked directionally similar changes in MBV within 2 s. This was followed by large and rapid adjustments [−2.14 ± 0.24 cm/s (vasoconstriction) during negative pressure and +2.14 ± 0.45 cm/s (vasodilatation) during positive pressure]. These adjustments served to return MBV to resting levels. This regulatory influence remained operative after 5-s static handgrip contractions. Of note, changes in transmural pressure were capable of altering the timing of the peak MBV response (5 ± 0, 2 ± 0, 6 ± 1 s ambient, negative, and positive pressure, respectively) as well as the speed of MBV adjustment (−2.03 ± 0.18, −2.48 ± 0.15, −0.84 ± 0.19 cm · s−1 · s−1ambient, negative, and positive pressure, respectively) after handgrip contractions. Vascular responses, seen with changes in transmural pressure, provide evidence that the myogenic response is normally operative in the limb circulation of humans.


2013 ◽  
Vol 305 (7) ◽  
pp. H1004-H1009 ◽  
Author(s):  
Kasper Kyhl ◽  
Kiril Aleksov Ahtarovski ◽  
Kasper Iversen ◽  
Carsten Thomsen ◽  
Niels Vejlstrup ◽  
...  

Positive-pressure ventilation (PPV) is widely used for treatment of acute cardiorespiratory failure, occasionally at the expense of compromised cardiac function and arterial blood pressure. The explanation why has largely rested on interpretation of intracardiac pressure changes. We evaluated the effect of PPV on the central circulation by studying cardiac chamber volumes with cardiac magnetic resonance imaging (CMR). We hypothesized that PPV lowers cardiac output (CO) mainly via the Frank-Starling relationship. In 18 healthy volunteers, cardiac chamber volumes and flow in aorta and the pulmonary artery were measured by CMR during PPV levels of 0, 10, and 20 cmH2O applied via a respirator and a face mask. All cardiac chamber volumes decreased in proportion to the level of PPV. Following 20-cmH2O PPV, the total diastolic and systolic cardiac volumes (±SE) decreased from 605 (±29) ml to 446 (±29) ml ( P < 0.001) and from 265 (±17) ml to 212 (±16) ml ( P < 0.001). Left ventricular stroke volume decreased by 27 (±4) ml/beat; heart rate increased by 7 (±2) beats/min; and CO decreased by 1.0 (±0.4) l/min ( P < 0.001). From 0 to 20 cmH2O, right and left ventricular peak filling rates decreased by −146 (±32) and −187 (±64) ml/s ( P < 0.05) but maximal emptying rates were unchanged. Cardiac filling and output decrease with increasing PPV in healthy volunteers. The decrease is seen even at low levels of PPV and should be taken into account when submitting patients to mechanical ventilation with positive pressures. The decrease in CO is fully explained by the Frank-Starling mechanism.


Sign in / Sign up

Export Citation Format

Share Document