scholarly journals An alternative numerical method for calculating C* parameter under mode I loading utilizing rate-dependent energy release rate

2020 ◽  
Vol 109 ◽  
pp. 102737
Author(s):  
Xianhe Du ◽  
Yanwei Dai ◽  
Qiang Han ◽  
Yinghua Liu ◽  
Peng Cao ◽  
...  
2020 ◽  
Vol 10 (12) ◽  
pp. 4227
Author(s):  
Yali Yang ◽  
Seok Jae Chu ◽  
Wei song Huang ◽  
Hao Chen

The evaluation of energy release rate with angle is still a challenging task in metal crack propagation analysis, especially for the mixed Mode I-II-III loading situation. In this paper, the energy release rate associated with stress intensity factors at an arbitrary angle under mixed mode loadings has been investigated using both a numerical method and theoretical derivation. A relatively simple and precise numerical method was established through a series of spatial-inclined ellipses in Mode I-II and ellipsoids in Mode I-II-III, with different propagation angles computed from simulation. Meanwhile, a theoretical expression of the energy release rate with angle for a crack tip under a I-II-III mixed mode crack was deduced based on the propagation mechanism of the crack tip under the influence of a stress field. It is confirmed that the theoretical expression deduced could provide results as accurately as the present numerical method. The present results were confirmed to be effective and accurate by comparison with experimental data and other literature.


1994 ◽  
Vol 338 ◽  
Author(s):  
Edward O. Shaffer ◽  
Scott A. Sikorski ◽  
Frederick J. McGarry

ABSTRACTThe edge delamination test (EDT) is being developed to measure the critical energy required to cause a thin film, under biaxial tensile stress, to debond from a rigid substrate[1]. The test uses circular features etched through biaxially stressed films adhered to a rigid substrate. If the stress is large enough, a stable debond ring grows radially about the feature. We use a finite element analysis to model the test, solving for the applied strain energy release rate as a function of crack length, feature hole radius and other geometrical parameters. The model identifies both mode I and mode II components of the strain energy release rate, and agrees with previous analytical solutions for the total debond energy. However, the model predicts, with a very refined mesh at the crack tip, the fracture process is pure mode I. To explore this result, critical strain energy release rates from the EDT and the island blister test (IBT) are compared. This agreement supports the model prediction that the failure process in the EDT is modeI peeling.


2005 ◽  
Author(s):  
Dhaval P. Makhecha ◽  
Rakesh K. Kapania ◽  
Eric R. Johnson ◽  
David A. Dillard ◽  
George C. Jacob ◽  
...  

This paper presents the development and numerical implementation of a rate dependent fracture model of an epoxy adhesive. Previous mode I fracture tests conducted under quasistatic, displacement controlled loading of an aluminum double cantilever beam (DCB) bonded with the epoxy exhibited unstable crack growth in the adhesive. Results from mode I fracture tests of compact tension specimens made from bulk adhesive at increasing cross head opening speeds are reported in this paper. The compact tension tests results showed a decreasing critical strain energy release rate with increasing cross head speed, with the critical energy release rate at 1 m/s cross head speed equal to about 20% of its quasi-static value. Two rate dependent cohesive zone models are formulated based on the compact tension test data. A cohesive de-cohesive relationship was postulated between the tractions acting across the crack faces and the opening displacement and opening velocity. These rate dependent cohesive zone models are implemented in a interface finite element to model discrete crack growth in the adhesive. The reaction force history from simulation of the DCB test is in good agreement with the test data using only the rate dependent interface element to model the adhesive.


Sign in / Sign up

Export Citation Format

Share Document