Development of a cheap and accessible carbon fibers-in-poly(ether ether ketone) tube with high stability for online in-tube solid-phase microextraction

Talanta ◽  
2016 ◽  
Vol 148 ◽  
pp. 313-320 ◽  
Author(s):  
Juanjuan Feng ◽  
Min Sun ◽  
Yanan Bu ◽  
Chuannan Luo
Author(s):  
Danny Vogel ◽  
Christian Schulze ◽  
Henry Dempwolf ◽  
Daniel Kluess ◽  
Rainer Bader

After total hip arthroplasty, stress-shielding is a potential risk factor for aseptic loosening of acetabular cups made of metals. This might be avoided by the use of acetabular cups made of implant materials with lower stiffness. The purpose of this numerical study was to determine whether a modular acetabular cup with a shell made of poly-ether-ether-ketone or poly-ether-ether-ketone reinforced with carbon fibers might be an alternative to conventional metallic shells. Therefore, the press-fit implantation of modular cups with shells made of different materials (Ti6Al4V, poly-ether-ether-ketone, and poly-ether-ether-ketone reinforced with carbon fibers) and varying liner materials (ceramics and ultra-high-molecular-weight polyethylene) into an artificial bone cavity was simulated using finite element analysis. The shell material had a major impact on the radial shell deformation determined at the rim of the shell, ranging from 17.9 µm for titanium over 92.2 µm for poly-ether-ether-ketone reinforced with carbon fibers up to 475.9 µm for poly-ether-ether-ketone. Larger radial liner deformations (up to 618.4 µm) occurred in combination with the shells made of poly-ether-ether-ketone compared to titanium and poly-ether-ether-ketone reinforced with carbon fibers. Hence, it can be stated that conventional poly-ether-ether-ketone is not a suitable shell material for modular acetabular cups. However, the radial shell deformation can be reduced if the poly-ether-ether-ketone reinforced with carbon fiber material is used, while deformation of ceramic liners is similar to the deformation in combination with titanium shells.


2017 ◽  
Vol 30 (6) ◽  
pp. 643-656 ◽  
Author(s):  
Ying Hu ◽  
Xiaochen Hou ◽  
Xiyu Hu ◽  
Dong Jiang

The composites of poly(ether ether ketone) (PEEK) with zinc oxide (ZnO) nanoparticles and short carbon fibers (SCFs) were produced with twin-screw extruder. ZnO nanoparticles were modified by γ-aminopropyl triethoxyl silane (APTES), and SCFs were wrapped with poly(ether sulfone) (PES). Morphological examination showed that the modified ZnO (m-ZnO) nanoparticles and wrapped SCFs (w-SCFs) were well dispersed in PEEK. The tribological behavior of PEEK composites under dry friction conditions was studied using a universal micro-tribotester. Exhaustive experimental results showed that the tribological behaviors, or the mechanical and thermal properties of the composites after the addition of m-ZnO nanoparticles and w-SCFs, were improved. The tribological properties of PEEK/ZnO/SCFs composites with 5.0 wt% functionalized ZnO and 10.0 wt% w-SCFs are the minimum.


Sign in / Sign up

Export Citation Format

Share Document