Thermal fragmentation enhanced identification and quantification of polystyrene micro/nanoplastics in complex media

Talanta ◽  
2020 ◽  
Vol 208 ◽  
pp. 120478 ◽  
Author(s):  
Yue Lin ◽  
Xiu Huang ◽  
Qian Liu ◽  
Zhenyu Lin ◽  
Guibin Jiang
Author(s):  
R. E. Heffelfinger ◽  
C. W. Melton ◽  
D. L. Kiefer ◽  
W. M. Henry ◽  
R. J. Thompson

A methodology has been developed and demonstrated which is capable of determining total amounts of asbestos fibers and fibrils in air ranging from as low as fractional nanograms per cubic meter (ng/m3) of air to several micrograms/m3. The method involves the collection of samples on an absolute filter and provides an unequivocal identification and quantification of the total asbestos contents including fibrils in the collected samples.The developed method depends on the trituration under controlled conditions to reduce the fibers to fibrils, separation of the asbestos fibrils from other collected air particulates (beneficiation), and the use of transmission microscopy for identification and quantification. Its validity has been tested by comparative analyses by neutron activation techniques. It can supply the data needed to set emissions criteria and to serve as a basis for assessing the potential hazard for asbestos pollution to the populace.


Planta Medica ◽  
2011 ◽  
Vol 77 (12) ◽  
Author(s):  
A Karioti ◽  
J Kukic Markovic ◽  
S Petrovic ◽  
M Niketic ◽  
A Bilia

2014 ◽  
Author(s):  
Aamin Shahbazi ◽  
Deva Ghosh ◽  
Mehrdad Soleimani ◽  
Juergen Mann
Keyword(s):  

2019 ◽  
Vol 485 (2) ◽  
pp. 229-233
Author(s):  
V. P. Kalyabina ◽  
E. N. Esimbekova ◽  
I. G. Torgashina ◽  
K. V. Kopylova ◽  
V. A. Kratasyuk

We formulated the principles of designing bioluminescent enzyme tests for assessing the quality of complex media which consist in providing the maximum sensitivity to potentially toxic chemicals at a minimal impact of uncontaminated complex media. The developed principles served as a basis for designing a new bioluminescent method for an integrated rapid assessment of chemical safety of fruits and vegetables which is based on using the luminescent bacterium enzymes (NAD(P)H:FMN oxidoreductase and luciferase) as a test system.


Sign in / Sign up

Export Citation Format

Share Document