Study of oxidation properties and decomposition kinetics of three-dimensional (3-D) braided carbon fiber

2004 ◽  
Vol 414 (1) ◽  
pp. 59-63 ◽  
Author(s):  
Pengzhao Gao ◽  
Hongjie Wang ◽  
Zhihao Jin
2007 ◽  
Vol 280-283 ◽  
pp. 1693-1696 ◽  
Author(s):  
Peng Zhao Gao ◽  
Hong Jie Wang ◽  
Zhi Hao Jin

A SiO2-SiC coating on 3-D carbon fiber perform (raw perform) was successfully prepared through several steps. The appearance and composition of the coating/3-D carbon fiber preform (coated perform=CP) was studied through IR, XRD and SEM. The isothermal weight-loss and non-isothermal thermogravimetric (TGA) were used to study the oxidation behavior of CP. The results showed that a uniform coating on every fiber of preform was achieved and the coating adhered well with fiber. The oxidation process of CP in isothermal condition was reaction-controlled in the first step, gas diffusion and reaction-controlled in the second step. The characteristic of the oxidation process in non-isothermal condition was self-catalytic.


2016 ◽  
Vol 10 (3) ◽  
pp. 325-328 ◽  
Author(s):  
Bemgba Nyakuma ◽  
◽  
Arshad Ahmad ◽  
Anwar Johari ◽  
Tuan Abdullah ◽  
...  

The study is aimed at investigating the thermal behavior and decomposition kinetics of torrefied oil palm empty fruit bunches (OPEFB) briquettes using a thermogravimetric (TG) analysis and the Coats-Redfern model. The results revealed that thermal decomposition kinetics of OPEFB and torrefied OPEFB briquettes is significantly influenced by the severity of torrefaction temperature. Furthermore, the temperature profile characteristics; Tonset, Tpeak, and Tend increased consistently due to the thermal lag observed during TG analysis. In addition, the torrefied OPEFB briquettes were observed to possess superior thermal and kinetic properties over the untorrefied OPEFB briquettes. It can be inferred that torrefaction improves the fuel properties of pelletized OPEFB for potential utilization in bioenergy conversion systems.


2019 ◽  
Author(s):  
Milad Narimani ◽  
Gabriel da Silva

Glyphosate (GP) is a widely used herbicide worldwide, yet accumulation of GP and its main byproduct, aminomethylphosphonic acid (AMPA), in soil and water has raised concerns about its potential effects to human health. Thermal treatment processes are one option for decontaminating material containing GP and AMPA, yet the thermal decomposition chemistry of these compounds remains poorly understood. Here, we have revealed the thermal decomposition mechanism of GP and AMPA by applying computational chemistry and reaction rate theory methods. <br>


Foods ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1809
Author(s):  
Zhanzhi Liu ◽  
Ying Li ◽  
Jing Wu ◽  
Sheng Chen

d-mannose has exhibited excellent physiological properties in the food, pharmaceutical, and feed industries. Therefore, emerging attention has been applied to enzymatic production of d-mannose due to its advantage over chemical synthesis. The gene age of N-acetyl-d-glucosamine 2-epimerase family epimerase/isomerase (AGEase) derived from Pseudomonas geniculata was amplified, and the recombinant P. geniculata AGEase was characterized. The optimal temperature and pH of P. geniculata AGEase were 60 °C and 7.5, respectively. The Km, kcat, and kcat/Km of P. geniculata AGEase for d-mannose were 49.2 ± 8.5 mM, 476.3 ± 4.0 s−1, and 9.7 ± 0.5 s−1·mM−1, respectively. The recombinant P. geniculata AGEase was classified into the YihS enzyme subfamily in the AGE enzyme family by analyzing its substrate specificity and active center of the three-dimensional (3D) structure. Further studies on the kinetics of different substrates showed that the P. geniculata AGEase belongs to the d-mannose isomerase of the YihS enzyme. The P. geniculata AGEase catalyzed the synthesis of d-mannose with d-fructose as a substrate, and the conversion rate was as high as 39.3% with the d-mannose yield of 78.6 g·L−1 under optimal reaction conditions of 200 g·L−1d-fructose and 2.5 U·mL−1P. geniculata AGEase. This novel P. geniculata AGEase has potential applications in the industrial production of d-mannose.


1995 ◽  
Vol 20 (2) ◽  
pp. 91-95 ◽  
Author(s):  
S. C. Mishra ◽  
Jyotsna Pant ◽  
G. C. Pant ◽  
P. K. Dutta ◽  
U. C. Durgapal

2020 ◽  
Vol 394 (1) ◽  
pp. 2000156
Author(s):  
Marcos V. Ferreira ◽  
Lauro A. Pradela Filho ◽  
Regina M. Takeuchi ◽  
Rosana M. N. Assunção

Sign in / Sign up

Export Citation Format

Share Document