Development of an artificial neural network model for the prediction of hydrocarbon density at high-pressure, high-temperature conditions

2013 ◽  
Vol 551 ◽  
pp. 124-130 ◽  
Author(s):  
Reza Haghbakhsh ◽  
Hooman Adib ◽  
Peyman Keshavarz ◽  
Mehdi Koolivand ◽  
Simin Keshtkari
2019 ◽  
Vol 10 (3) ◽  
pp. 1081-1095 ◽  
Author(s):  
Okorie E. Agwu ◽  
Julius U. Akpabio ◽  
Adewale Dosunmu

AbstractIn this paper, an artificial neural network model was developed to predict the downhole density of oil-based muds under high-temperature, high-pressure conditions. Six performance metrics, namely goodness of fit (R2), mean square error (MSE), mean absolute error (MAE), mean absolute percentage error (MAPE), sum of squares error (SSE) and root mean square error (RMSE), were used to assess the performance of the developed model. From the results, the model had an overall MSE of 0.000477 with an MAE of 0.017 and an R2 of 0.9999, MAPE of 0.127, RMSE of 0.022 and SSE of 0.056. All the model predictions were in excellent agreement with the measured results. Consequently, in assessing the generalization capability of the developed model for the oil-based mud, a new set of data that was not part of the training process of the model comprising 34 data points was used. In this regard, the model was able to predict 99% of the unfamiliar data with an MSE of 0.0159, MAE of 0.101, RMSE of 0.126, SSE of 0.54 and a MAPE of 0.7. In comparison with existing models, the ANN model developed in this study performed better. The sensitivity analysis performed shows that the initial mud density has the greatest impact on the final mud density downhole. This unique modelling technique and the model it evolved represents a huge step in the trajectory of achieving full automation of downhole mud density estimation. Furthermore, this method eliminates the need for surface measurement equipment, while at the same time, representing more accurately the downhole mud density at any given pressure and temperature.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3042
Author(s):  
Sheng Jiang ◽  
Mansour Sharafisafa ◽  
Luming Shen

Pre-existing cracks and associated filling materials cause the significant heterogeneity of natural rocks and rock masses. The induced heterogeneity changes the rock properties. This paper targets the gap in the existing literature regarding the adopting of artificial neural network approaches to efficiently and accurately predict the influences of heterogeneity on the strength of 3D-printed rocks at different strain rates. Herein, rock heterogeneity is reflected by different pre-existing crack and filling material configurations, quantitatively defined by the crack number, initial crack orientation with loading axis, crack tip distance, and crack offset distance. The artificial neural network model can be trained, validated, and tested by finite 42 quasi-static and 42 dynamic Brazilian disc experimental tests to establish the relationship between the rock strength and heterogeneous parameters at different strain rates. The artificial neural network architecture, including the hidden layer number and transfer functions, is optimized by the corresponding parametric study. Once trained, the proposed artificial neural network model generates an excellent prediction accuracy for influences of high dimensional heterogeneous parameters and strain rate on rock strength. The sensitivity analysis indicates that strain rate is the most important physical quantity affecting the strength of heterogeneous rock.


Sign in / Sign up

Export Citation Format

Share Document