Non-isothermal crystallization behavior of PLA/LLDPE/nanoclay hybrid: Synergistic role of LLDPE and clay

2013 ◽  
Vol 565 ◽  
pp. 102-113 ◽  
Author(s):  
Ladan As’habi ◽  
Seyed Hassan Jafari ◽  
Hossein Ali Khonakdar ◽  
Liane Häussler ◽  
Udo Wagenknecht ◽  
...  
RSC Advances ◽  
2015 ◽  
Vol 5 (80) ◽  
pp. 65058-65067 ◽  
Author(s):  
Cai-Liang Zhang ◽  
Tao-Tao Wang ◽  
Xue-Ping Gu ◽  
Lian-Fang Feng

With an aim to understand a role of grafted graphene oxide (GO) in crystallization process of polymer, isothermal and non-isothermal crystallization behaviors of a functional polypropylene grafted GO nanocomposite were investigated systematically.


2009 ◽  
Vol 30 (9) ◽  
pp. 1338-1344 ◽  
Author(s):  
Xiaoxiu Li ◽  
Jingbo Yin ◽  
Zhenyang Yu ◽  
Shifeng Yan ◽  
Xiaochun Lu ◽  
...  

2019 ◽  
Vol 39 (2) ◽  
pp. 124-133 ◽  
Author(s):  
Bingxiao Liu ◽  
Guosheng Hu ◽  
Jingting Zhang ◽  
Zhongqiang Wang

AbstractStudy of the crystallization kinetics is particularly necessary for the analysis and design of processing operations, especially the non-isothermal crystallization behavior, which is due to the fact that most practical processing techniques are carried out under non-isothermal conditions. The non-isothermal crystallization behaviors of polyamide 6 (PA6) and PA6/high-density polyethylene/maleic anhydride/2,5-dimethyl-2,5-di(tert-butylperoxy)hexane (PA6/HDPE/MAH/L-101) composites were investigated by differential scanning calorimetry (DSC). The crystallization kinetics under non-isothermal condition was analyzed by the Jeziorny and Mo equations, and the activation energy was determined by the Kissinger and Takhor methods. The crystal structure and morphology were analyzed by wide-angle X-ray diffraction (WXRD) and polarized optical microscopy (POM). The results indicate that PA6/HDPE/MAH/L-101 has higher crystallization temperature and crystallization rate, which is explained as due to its heterogeneous nuclei.


2012 ◽  
Vol 268-270 ◽  
pp. 37-40 ◽  
Author(s):  
Yan Hua Cai

The Poly(L-lactic acid)(PLLA)/surface-grafting silica(g-SiO2) nanocomposites were prepared by melt blending. The isothermal crystallization behavior of PLLA/g-SiO2 nanocomposites with different content of g-SiO2 was investigated by optical depolarizer. In isothermal crystallization from melt, the induction periods and half times for overall PLLA crystallization (95°C Tc 120°C) were affected by the crystallization temperature and the content of g-SiO2 in nanocomposites. The results showed that g-SiO2 as a kind of heterogeneous nucleating agent can reduce induction periods and half times for overall PLLA crystallization. The thermal properties of PLLA/g-SiO2 samples were also investigated by differential scanning calorimetry (DSC), The results showed that the crystalline degree of PLLA was improved as the presence of g-SiO2.


2017 ◽  
Vol 89 (1) ◽  
pp. 125-140 ◽  
Author(s):  
Ioanna-Georgia I. Athanasoulia ◽  
Maximos N. Christoforidis ◽  
Dimitrios M. Korres ◽  
Petroula A. Tarantili

AbstractIn this study, hydroxyapatite (HA) was incorporated in a poly(L-lactic acid) (PLLA) matrix and the thermal properties and crystallization behavior of the derived composites were investigated. The nanocomposites, containing 0–20 wt% HA, were prepared by melt extrusion employing a twin-screw extruder. XRD experiments verified an increase in the intensity of the characteristic diffraction peak of the α-form crystalline phase of PLLA with increasing HA content. By DSC experiments it was observed that the presence of HA increased the crystallinity during cold crystallization, leading to a shift of cold-crystallization temperature to lower values and to an increase in the melting temperature of the PLLA phase. Isothermal crystallization experiments at 100, 110, 115 and 120°C, revealed a maximum in crystallization kinetic around 100°C after the addition of HA compared to 115°C for pure PLLA. The crystallization rate of PLLA matrix in the nanocomposites decreased with increasing crystallization temperature. By using the Avrami and Lauritzen-Hoffman equations the exponent n was calculated in the range 2–3 and a theoretical approach verified that the HA/PLLA systems belong to Regime II of crystallization behavior. The investigated melting behavior of PLLA was attributed to better organized crystalline structure with increasing isothermal crystallization temperatures and might be related with the longer time necessary for the completion of crystallization.


Sign in / Sign up

Export Citation Format

Share Document