crystallization kinetic
Recently Published Documents


TOTAL DOCUMENTS

120
(FIVE YEARS 24)

H-INDEX

18
(FIVE YEARS 4)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 657
Author(s):  
Lishun Chen ◽  
Yuting Long ◽  
Mingkai Zhou ◽  
Huaide Wang

In this work, more than 70 wt % of ferromanganese slag (containing 40 wt % CaO) was used to synthesize high-calcium, CaO-MgO-Al2O3-SiO2 (CMAS) glass ceramics. The effect of SiO2/CaO on the structure, crystallization behavior and microstructure of high-calcium, CMAS, slag glass ceramics was studied by IR, NMR, DSC, XRD and SEM. The results showed that in the high-calcium, CMAS glass ceramics, the main existing forms of silicon–oxygen tetrahedra (Qn) were Q0 and Q1. With the increase in the SiO2/CaO, Qn changed from Q0 and Q1 (main units) to Q1 (main units) and Q2, and then to Q1 and Q2 (main units). The polymerization degree of Qn changed from low to high, making the glass more stable, which led to the increase in crystallization temperature and the decrease in crystallization kinetic constant (k) and frequency factor (υ). At the same time, the change in the Qn structure resulted in a gradual change to the main crystal, from akermanite to diopside–wollastonite.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Shoushan Liu ◽  
Dong Li ◽  
Xinyi He ◽  
Hang Li ◽  
Xiaoyan Li ◽  
...  

Abstract The dry fractionation beef tallow and their products were analyzed in the dynamic thermodynamic analysis, isothermal analysis and crystallization kinetics analysis in this experiment. Through the dynamic thermodynamic analysis by DSC, the possibility of fine fractionation of beef tallow at 25 °C and 42.9 °C crystallization temperature was obtained. The dynamic thermodynamic analysis of dry fractionation products was carried out, and the linear functions of peak temperature and melting/crystallization rate of beef tallow and its stearic acid mixture were constructed. The crystallization temperature and melting point were obtained by linear function. The isothermal crystallization kinetic model was used to calculate and fit the experimental data by the Avrami model. Beef tallow and its stearic mixture were fitted with the Avrami equation to obtain R 2 ≥ 0.98. This analysis provides an innovative idea and method for thermodynamics and crystallization kinetics of beef tallow.


Author(s):  
Gislayne Rayane Alves da Silva ◽  
Claudia Patrícia Fernandez Perdomo ◽  
Rodolfo Foster Klein Gunnewiek ◽  
Ruth Herta Goldschmidt Aliaga Kiminami

Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3226
Author(s):  
Siti Shazra Shazleen ◽  
Lawrence Yee Foong Ng ◽  
Nor Azowa Ibrahim ◽  
Mohd Ali Hassan ◽  
Hidayah Ariffin

This work investigated the combined effects of CNF nucleation (3 wt.%) and PLA-g-MA compatibilization at different loadings (1–4 wt.%) on the crystallization kinetics and mechanical properties of polylactic acid (PLA). A crystallization kinetics study was done through isothermal and non-isothermal crystallization kinetics using differential scanning calorimetry (DSC) analysis. It was shown that PLA-g-MA had some effect on nucleation as exhibited by the value of crystallization half time and crystallization rate of the PLA/PLA-g-MA, which were increased by 180% and 172%, respectively, as compared to neat PLA when isothermally melt crystallized at 100 °C. Nevertheless, the presence of PLA-g-MA in PLA/PLA-g-MA/CNF3 nanocomposites did not improve the crystallization rate compared to that of uncompatibilized PLA/CNF3. Tensile strength was reduced with the increased amount of PLA-g-MA. Contrarily, Young’s modulus values showed drastic increment compared to the neat PLA, showing that the addition of the PLA-g-MA contributed to the rigidity of the PLA nanocomposites. Overall, it can be concluded that PLA/CNF nanocomposite has good performance, whereby the addition of PLA-g-MA in PLA/CNF may not be necessary for improving both the crystallization kinetics and tensile strength. The addition of PLA-g-MA may be needed to produce rigid nanocomposites; nevertheless, in this case, the crystallization rate of the material needs to be compromised.


2021 ◽  
Author(s):  
Meshal Alzaid ◽  
mohamed N. Abd-el Salam ◽  
Ammar Qasem ◽  
E. R. Shaaban ◽  
N. M.A. Hadia

Abstract This framework focuses mainly on a detailed study of the pre-crystallization criteria that characterize the As40S45Se15 glassy alloy in various heating rates ranging from 5 to 40 (K/min.) by DSC thermo-grams in the range of (300-575 K). These criteria aim to clarify the relationship of the tendency of glass-forming by the heating rate for the investigated glassy alloy. As well, the present framework demonstrates the criteria of thermal stability. Continuously, the various nucleation and growth pathways. The transformation in activation energy with the volume of the crystalline portion was deduced and, through this, we were able to determine the surface resistance of the analyzed bulk alloy in the crystallization region. The crystalline structure of the study sample was recognized by X-ray diffraction (XRD) and electron scanning microscope (SEM).


2021 ◽  
Vol 172 ◽  
pp. 110889
Author(s):  
Liangbo Sun ◽  
Jian Fang ◽  
Chunfeng Liu ◽  
Songsong Guo ◽  
Jie Zhang

Sign in / Sign up

Export Citation Format

Share Document