scholarly journals Isoconversional Computations for Nonisothermal Kinetic Predictions

2021 ◽  
pp. 178859
Author(s):  
Lérys Granado ◽  
Nicolas Sbirrazzuoli
2009 ◽  
Vol 43 (12) ◽  
pp. 716-720 ◽  
Author(s):  
F. S. Murakami ◽  
L. S. Bernardi ◽  
R. N. Pereira ◽  
B. R. Valente ◽  
E. C. Vasconcelos ◽  
...  

2021 ◽  
Author(s):  
Akinola David Olugbemide ◽  
Blaž Likozar ◽  
Ana Oberlintner ◽  
Uroš Novak ◽  
Ekebafe Lawrence

Abstract In this research study, the impact of the feedstock to the inoculum (F/I) amount ratio in the dry anaerobic digestion (DAD) of Hura crepitans leaves was evaluated. Measured biogas volumes, as well as the chemical kinetic predictions for exponential, logistic and Gompertz model, depicting the agreement of the simulations over time, were also determined. From the F/I equivalents 2, 4 and 6 at 22 % of packed total solids, which were considered in analysis test procedure, the DAD digester with F/I number 4 was the most promising in terms of biogas’ production rate. Its daily methane/carbon dioxide was 690 mL, while cumulative generation productivity was greater than 2 L/sample, respectively. On the other hand, the DAD reaction with F/I contained 6, recorded the lowest related expressed primary matter of < 1 L. An associated early commencement of the organic material breakdown in all bio vessels was indicative of a good start-up phase, which is one of the challenges, often encountered in DAD process. Furthermore, applied experimental methods revealed the direct correlation phenomena between biodegradability physical constants, measured molecular CH4/CO2 synthesis and simulations. Hura crepitans being an invasive plant species makes its lignocellulosic fractions desired in terms of valorisation, as it is not competing with agricultural crop products. Modelling can, moreover, contribute to consecutive operation optimisation, scaling and integrating, also taking dynamics under consideration. As opposed to bio-refining wood residues, where individual cellulose, hemicellulose or lignin biopolymers can be attained, degradation to yield CH4 is robust, as well as compatible in combustion.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Huda AlFannakh

The behavior of polyvinyl chlorine (PVC)/zinc oxide (ZnO) nanoparticles was investigated. To improve the dispersion and distribution of zinc nanoparticles within the host polymer (PVC), they were treated with water before being added to the polymer. The nanocomposite samples were prepared by casting method using different weight ratios of ZnO nanoparticles. The prepared nanocomposite samples were characterized by thermogravimetric analysis (TGA). Both thermal stability and kinetic analysis of the prepared samples were investigated. The ZnO nanoparticles lower the activation energy and decrease the thermal stability of PVC. Kissinger, Flynn-Wall-Ozawa, and Kissinger-Akahira-Sunose models were used in the nonisothermal kinetic analysis of PVC/ZnO nanocomposite samples. The thermal stability behavior due to the addition of zinc oxide nanoparticles was explained and correlated with the behavior of the kinetic parameters of the samples. The AC conductivity as function of frequency and temperature was also investigated. The addition of ZnO nanoparticle increases the AC conductivity, and the temperature-independent region decreased by increasing temperature. Both S and A coefficients were predicted using the Jonscher power law and OriginLab software. The trends of S and A coefficients were discussed based on the glass transition of the host polymer.


2020 ◽  
Vol 117 (6) ◽  
pp. 3307-3318 ◽  
Author(s):  
Meghan C. Ferrall-Fairbanks ◽  
Chris A. Kieslich ◽  
Manu O. Platt

Enzymes are catalysts in biochemical reactions that, by definition, increase rates of reactions without being altered or destroyed. However, when that enzyme is a protease, a subclass of enzymes that hydrolyze other proteins, and that protease is in a multiprotease system, protease-as-substrate dynamics must be included, challenging assumptions of enzyme inertness, shifting kinetic predictions of that system. Protease-on-protease inactivating hydrolysis can alter predicted protease concentrations used to determine pharmaceutical dosing strategies. Cysteine cathepsins are proteases capable of cathepsin cannibalism, where one cathepsin hydrolyzes another with substrate present, and misunderstanding of these dynamics may cause miscalculations of multiple proteases working in one proteolytic network of interactions occurring in a defined compartment. Once rates for individual protease-on-protease binding and catalysis are determined, proteolytic network dynamics can be explored using computational models of cooperative/competitive degradation by multiple proteases in one system, while simultaneously incorporating substrate cleavage. During parameter optimization, it was revealed that additional distraction reactions, where inactivated proteases become competitive inhibitors to remaining, active proteases, occurred, introducing another network reaction node. Taken together, improved predictions of substrate degradation in a multiple protease network were achieved after including reaction terms of autodigestion, inactivation, cannibalism, and distraction, altering kinetic considerations from other enzymatic systems, since enzyme can be lost to proteolytic degradation. We compiled and encoded these dynamics into an online platform (https://plattlab.shinyapps.io/catKLS/) for individual users to test hypotheses of specific perturbations to multiple cathepsins, substrates, and inhibitors, and predict shifts in proteolytic network reactions and system dynamics.


Sign in / Sign up

Export Citation Format

Share Document