scholarly journals Comparison of the performance of a hydrologic model and a deep learning technique for rainfall runoff analysis

Author(s):  
Chorong Kim ◽  
Chung-Soo Kim
2021 ◽  
Author(s):  
Jaewon Kwak ◽  
Heechan Han ◽  
Soojun Kim ◽  
Hung Soo Kim

Abstract It is no doubt that the reliable runoff simulation for proper water resources management is essential. In the past, the runoff was generally modeled from hydrologic models that analyze the rainfall-runoff relationship of the basin. However, since techniques have developed rapidly, it has been attempted to apply especially deep-learning technique for hydrological studies as an alternative to the hydrologic model. The objective of the study is to examine whether the deep-learning technique can completely replace the hydrologic model and show how to improve the performance of runoff simulation using deep-learning technique. The runoff in the Hyeongsan River basin, South Korea from 2013 to 2020 were simulated using two models, 1) Long Short-Term Memory model that is a deep learning technique widely used in the hydrological study and 2) TANK model, and then we compared the runoff modeling results from both models. The results suggested that it is hard to completely replace the hydrological model with the deep-learning technique due to its simulating behavior and discussed how to improve the reliability of runoff simulation results. Also, a method to improve the efficiency of runoff simulation through a hybrid model which is a combination of two approaches, deep-learning technique and hydrologic model was presented.


2021 ◽  
pp. 1-12
Author(s):  
Gaurav Sarraf ◽  
Anirudh Ramesh Srivatsa ◽  
MS Swetha

With the ever-rising threat to security, multiple industries are always in search of safer communication techniques both in rest and transit. Multiple security institutions agree that any systems security can be modeled around three major concepts: Confidentiality, Availability, and Integrity. We try to reduce the holes in these concepts by developing a Deep Learning based Steganography technique. In our study, we have seen, data compression has to be at the heart of any sound steganography system. In this paper, we have shown that it is possible to compress and encode data efficiently to solve critical problems of steganography. The deep learning technique, which comprises an auto-encoder with Convolutional Neural Network as its building block, not only compresses the secret file but also learns how to hide the compressed data in the cover file efficiently. The proposed techniques can encode secret files of the same size as of cover, or in some sporadic cases, even larger files can be encoded. We have also shown that the same model architecture can theoretically be applied to any file type. Finally, we show that our proposed technique surreptitiously evades all popular steganalysis techniques.


2021 ◽  
pp. 1-34
Author(s):  
Kadam Vikas Samarthrao ◽  
Vandana M. Rohokale

Email has sustained to be an essential part of our lives and as a means for better communication on the internet. The challenge pertains to the spam emails residing a large amount of space and bandwidth. The defect of state-of-the-art spam filtering methods like misclassification of genuine emails as spam (false positives) is the rising challenge to the internet world. Depending on the classification techniques, literature provides various algorithms for the classification of email spam. This paper tactics to develop a novel spam detection model for improved cybersecurity. The proposed model involves several phases like dataset acquisition, feature extraction, optimal feature selection, and detection. Initially, the benchmark dataset of email is collected that involves both text and image datasets. Next, the feature extraction is performed using two sets of features like text features and visual features. In the text features, Term Frequency-Inverse Document Frequency (TF-IDF) is extracted. For the visual features, color correlogram and Gray-Level Co-occurrence Matrix (GLCM) are determined. Since the length of the extracted feature vector seems to the long, the optimal feature selection process is done. The optimal feature selection is performed by a new meta-heuristic algorithm called Fitness Oriented Levy Improvement-based Dragonfly Algorithm (FLI-DA). Once the optimal features are selected, the detection is performed by the hybrid learning technique that is composed of two deep learning approaches named Recurrent Neural Network (RNN) and Convolutional Neural Network (CNN). For improving the performance of existing deep learning approaches, the number of hidden neurons of RNN and CNN is optimized by the same FLI-DA. Finally, the optimized hybrid learning technique having CNN and RNN classifies the data into spam and ham. The experimental outcomes show the ability of the proposed method to perform the spam email classification based on improved deep learning.


Smart Cities ◽  
2020 ◽  
Vol 3 (2) ◽  
pp. 444-455
Author(s):  
Abdul Syafiq Abdull Sukor ◽  
Latifah Munirah Kamarudin ◽  
Ammar Zakaria ◽  
Norasmadi Abdul Rahim ◽  
Sukhairi Sudin ◽  
...  

Device-free localization (DFL) has become a hot topic in the paradigm of the Internet of Things. Traditional localization methods are focused on locating users with attached wearable devices. This involves privacy concerns and physical discomfort especially to users that need to wear and activate those devices daily. DFL makes use of the received signal strength indicator (RSSI) to characterize the user’s location based on their influence on wireless signals. Existing work utilizes statistical features extracted from wireless signals. However, some features may not perform well in different environments. They need to be manually designed for a specific application. Thus, data processing is an important step towards producing robust input data for the classification process. This paper presents experimental procedures using the deep learning approach to automatically learn discriminative features and classify the user’s location. Extensive experiments performed in an indoor laboratory environment demonstrate that the approach can achieve 84.2% accuracy compared to the other basic machine learning algorithms.


Sign in / Sign up

Export Citation Format

Share Document