Crustal thickening and variations in architecture from the Qaidam basin to the Qang Tang (North–Central Tibetan Plateau) from wide-angle reflection seismology

2006 ◽  
Vol 412 (3-4) ◽  
pp. 121-140 ◽  
Author(s):  
M. Jiang ◽  
A. Galvé ◽  
A. Hirn ◽  
B. de Voogd ◽  
M. Laigle ◽  
...  
2020 ◽  
Vol 132 (9-10) ◽  
pp. 2202-2220 ◽  
Author(s):  
Yue Tang ◽  
Qing-Guo Zhai ◽  
Sun-Lin Chung ◽  
Pei-Yuan Hu ◽  
Jun Wang ◽  
...  

Abstract The Meso-Tethys was a late Paleozoic to Mesozoic ocean basin between the Cimmerian continent and Gondwana. Part of its relicts is exposed in the Bangong–Nujiang suture zone, in the north-central Tibetan Plateau, that played a key role in the evolution of the Tibetan plateau before the India-Asia collision. A Penrose-type ophiolitic sequence was newly discovered in the Ren Co area in the middle of the Bangong–Nujiang suture zone, which comprises serpentinized peridotites, layered and isotropic gabbros, sheeted dikes, pillow and massive basalts, and red cherts. Zircon U-Pb dating of gabbros and plagiogranites yielded 206Pb/238U ages of 169–147 Ma, constraining the timing of formation of the Ren Co ophiolite. The mafic rocks (i.e., basalt, diabase, and gabbro) in the ophiolite have uniform geochemical compositions, coupled with normal mid-ocean ridge basalt-type trace element patterns. Moreover, the samples have positive whole-rock εNd(t) [+9.2 to +8.3], zircon εHf(t) [+17 to +13], and mantle-like δ18O (5.8–4.3‰) values. These features suggest that the Ren Co ophiolite is typical of mid-ocean ridge-type ophiolite that is identified for the first time in the Bangong–Nujiang suture zone. We argue that the Ren Co ophiolite is the relic of a fast-spreading ridge that occurred in the main oceanic basin of the Bangong–Nujiang segment of Meso-Tethys. Here the Meso-Tethyan orogeny involves a continuous history of oceanic subduction, accretion, and continental assembly from the Early Jurassic to Early Cretaceous.


2020 ◽  
Author(s):  
Shaozhuo Liu ◽  
jean-Mathieu Nocquet ◽  
Yann Klinger ◽  
Xiwei Xu ◽  
Guihua Chen ◽  
...  

<p>GPS observations across active mountain ranges provide essential constraints on uplift rates, which sheds light on the underlying physical processes contributing to the development of topography. The Kunlun Shan (KLS) mountain range bounds the topographic high of the northern Tibetan Plateau. The elevation across the range sharply decreases from >4000 m in the interior of the plateau to ~2700 m in the Qaidam Basin. The mechanism responsible for its formation is debated with several models proposed on the basis of seismological and geological data. Here we consider data constraints from a cGPS profile that runs across the KLS and was installed in 2007. Our GPS time series reveal direct mechanical response to the crustal thickening across the KLS and therefore provide a promising dataset against which some geodynamical models can be tested.  Based on the GPS time series, we estimate rates of tectonic uplift and evaluate the impacts originating from reference frame drifts, common mode errors, some non-tectonic signals (e.g., hydrological loading), time-correlated noise, and postseismic transients of recent large earthquake. The GPS-derived uplift rate is ~1 mm/yr at the KLS. We find that ~2 mm/yr deep slip on a low- or intermediate-angle south-dipping thrust fault can explain the GPS-derived uplift rate. The possibility of a high-angle thrust fault, as has been proposed for the Longmen Shan (southeastern Tibetan Plateau), does not appear to be likely in the KLS case.</p>


2017 ◽  
Vol 9 (1) ◽  
Author(s):  
Jianming Guo ◽  
Xuebing Wei ◽  
Guohui Long ◽  
Bo Wang ◽  
Hailong Fan ◽  
...  

AbstractThe Qaidam basin, bounded by the Altyn Tagh fault in the north, is located in the northeast of the Tibet plateau, and it has important implications for understanding the history and mechanism of Tibetan plateau formation during the Cenozoic Indo-Eurasia collision. In this study, we constructed the main geological structures and surfaces in three dimensions through the interpolation of regularly spaced 2D seismic sections, constrained by wells data and surface geology of the Qaidam basin in northeast Tibet. Meanwhile the Cenozoic tectonic history of the Qaidam basin was reconstructed and the uplift mechanism of the Tibetan plateau was discussed. This study presents the subsurface data in conjunction with observations and analysis of the stratigraphic and sedimentary evolution. The Cenozoic deformation history of the Qaidam basin shows geologic synchroneity with uplifting history of the Tibet Plateau. It is therefore proposed that the deformation and uplifting in the south and north edges of the Tibet Plateau was almost synchronous. The total shortening and shortening rate during Cenozoic reached 25.5 km and 11.2% respectively across the Qaidam basin, indicating that the loss of the left-lateral strike slip rates of the Altyn Tagh fault has been structurally transformed into local crustal thickening across NW-trending folds and thrust faults. Meanwhile there is an about 11° vertical component along the strike-slip Altyn Tagh fault, the block oblique slip shows one more growth mechanism of the northeast Tibet.


Sign in / Sign up

Export Citation Format

Share Document