Insights from North America's failed Midcontinent Rift into the evolution of continental rifts and passive continental margins

2018 ◽  
Vol 744 ◽  
pp. 403-421 ◽  
Author(s):  
Seth Stein ◽  
Carol A. Stein ◽  
Reece Elling ◽  
Jonas Kley ◽  
G. Randy Keller ◽  
...  
2020 ◽  
Author(s):  
Susanne Buiter

<p>Seismic observations show that some rifted continental margins may have substantial amounts of offshore sediments. For example, sediment layers of several kilometres thick are found on the margins of Mid Norway, Namibia and Angola. Intriguingly, these margins are wide, being characterised by distances of several hundreds of kilometres from typical continental crustal thicknesses of 30-40 km to clearly identifiable oceanic crust. On the other hand, some margins that are sediment-starved, such as Goban Spur, Flemish Cap and Northern Norway, have short onshore-to-offshore transitions. Variations in the amount of sediments not only impact the development of offshore sedimentary basins, but the changes in mass balance by erosion and sedimentation can also interact with extensional tectonic processes. In convergent settings, such feedback relationships between erosion and tectonic deformation have long been highlighted: Erosion reduces the elevation and width of mountain belts and in turn tectonic activity and exhumation are focused at regions of enhanced erosion. But what is the role played by surface processes during formation of rifted continental margins?</p><p>I use geodynamic finite-element experiments to explore the response of continental rifts to erosion and sedimentation from initial rifting to continental break-up. The experiments predict that rifted margins with thick syn-rift sedimentary packages are more likely to form hyper-extended crust and require more stretching to achieve continental break-up than sediment-starved margins. These findings imply that surface processes can control the style of continental break-up and that the role of sedimentation in rifted margin evolution goes far beyond the simple exertion of a passive weight.</p>


2021 ◽  
Author(s):  
Reece Elling ◽  
Seth Stein ◽  
Carol Stein ◽  
G. Randy Keller

<p>Comparative study of North America’s failed continental rifts allows investigation of the effects of extension, magmatism, magmatic underplating and rift inversion in the evolution of rifting. We explore this issue by examining the gravity signatures of the Midcontinent Rift (MCR), Reelfoot Rift (RR), and Southern Oklahoman Aulacogen (SOA). The ~1.1 Ga MCR records aspects of the complex assembly of Rodina, while the structures related to the ~560 Ma RR and SOA formed during the later breakup of Rodinia and subsequent assembly of Pangea. Combining average gravity anomalies along each rift with seismic data, we examine whether these data support the existence of high-density residual melt underplates (“rift pillows”), reflect the possible amounts of inversion, and whether these rifts should be considered analogs of one another at different stages in rift evolution. The MCR and SOA have strong gravity highs along much of their length. Furthermore, the west and east arms of the MCR have different gravity signatures. The west arm of the MCR has a positive gravity anomaly of 80-100 mgals, while the east arm and SOA have positive anomalies of only 40-50 mgals. The RR does not exhibit a high positive anomaly along much of its length. The positive anomalies of both arms of the MCR and SOA reflect 10-20 km thick underplates at the base of the crust. These gravity anomalies also reflect greater amounts of inversion, during which the rift-bounding normal faults are reactivated by later compression, bringing the high-density igneous rocks closer to the surface. By averaging gravity data along the length of each failed rift, we can more easily distinguish between the history of individual rifts and general features of rifting that apply to other failed or active rifts around the world.</p>


Geology ◽  
2000 ◽  
Vol 28 (3) ◽  
pp. 207-210 ◽  
Author(s):  
Damian B. OʼGrady ◽  
James P. M. Syvitski ◽  
Lincoln F. Pratson ◽  
J. F. Sarg
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document