FRET-based assay of the processing reaction kinetics of stimulus-responsive peptides: influence of amino acid sequence on reaction kinetics

Tetrahedron ◽  
2009 ◽  
Vol 65 (11) ◽  
pp. 2212-2216 ◽  
Author(s):  
Akira Shigenaga ◽  
Jun Yamamoto ◽  
Hiroko Hirakawa ◽  
Keiko Yamaguchi ◽  
Akira Otaka
1964 ◽  
Vol 42 (6) ◽  
pp. 755-762 ◽  
Author(s):  
David B. Smith

An outline of present ideas concerning the arrangement, folding, and chemistry of the polypeptide chains of hemoglobin is given with some references to present know ledge of myoglobin.New material includes a partial amino acid sequence of the β-chain of horse hemoglobin, details concerning the amino acids lining the heme pocket of horse hemoglobin, and the effects of carboxypeptidases A and B on horse oxy- and horse deoxy-hemoglobin. The kinetics of the latter reactions are not simple. The C-terminal amino acids are released more rapidly from the oxygenated form.


2019 ◽  
Vol 116 (17) ◽  
pp. 8137-8142 ◽  
Author(s):  
Malwina Szczepaniak ◽  
Manuel Iglesias-Bexiga ◽  
Michele Cerminara ◽  
Mourad Sadqi ◽  
Celia Sanchez de Medina ◽  
...  

Protein (un)folding rates depend on the free-energy barrier separating the native and unfolded states and a prefactor term, which sets the timescale for crossing such barrier or folding speed limit. Because extricating these two factors is usually unfeasible, it has been common to assume a constant prefactor and assign all rate variability to the barrier. However, theory and simulations postulate a protein-specific prefactor that contains key mechanistic information. Here, we exploit the special properties of fast-folding proteins to experimentally resolve the folding rate prefactor and investigate how much it varies among structural homologs. We measure the ultrafast (un)folding kinetics of five natural WW domains using nanosecond laser-induced temperature jumps. All five WW domains fold in microseconds, but with a 10-fold difference between fastest and slowest. Interestingly, they all produce biphasic kinetics in which the slower phase corresponds to reequilibration over the small barrier (<3RT) and the faster phase to the downhill relaxation of the minor population residing at the barrier top [transition state ensemble (TSE)]. The fast rate recapitulates the 10-fold range, demonstrating that the folding speed limit of even the simplest all-β fold strongly depends on the amino acid sequence. Given this fold’s simplicity, the most plausible source for such prefactor differences is the presence of nonnative interactions that stabilize the TSE but need to break up before folding resumes. Our results confirm long-standing theoretical predictions and bring into focus the rate prefactor as an essential element for understanding the mechanisms of folding.


1965 ◽  
Vol 209 (3) ◽  
pp. 577-583 ◽  
Author(s):  
Sol Sherry ◽  
Norma Alkjaersig ◽  
Anthony P. Fletcher

A number of biologically important proteolytic enzymes, particularly those involved in the reactions of blood coagulation and fibrinolysis, have the ability to hydrolyze synthetic esters of the basic amino acids, arginine, and lysine. Though synthetic amino acid esters have been used for the study of the reaction kinetics of these enzymes and for assay purposes, relatively little has been done to characterize these enzymes on the basis of their differing abilities to hydrolyze synthetic substrates. Utilizing a variety of comparably substituted arginine and lysine esters, observations were made on the reaction kinetics of several basic amino acid esterases; significant differences were noted among these enzymes, sufficient to establish their separate identity. Further characterization of the reaction of thrombin with synthetic substrates revealed that this enzyme readily hydrolyzes various substituted lysine esters as well as arginine esters. The highest Vmax was observed for the throm-bin-carbobenzoxy-lysine methyl ester reaction but the greatest affinity was observed with benzoyl-arginine methyl ester. The data also clearly establish enzymatic differences between human and bovine thrombin, and between the latter and bovine plasma thrombokinase.


1987 ◽  
pp. 365-370
Author(s):  
T. E. Meyer ◽  
H. M. Holden ◽  
I. Rayment ◽  
R. G. Bartsch ◽  
M. A. Cusanovich ◽  
...  

2004 ◽  
Vol 43 (13) ◽  
pp. 3217-3222 ◽  
Author(s):  
Nobuaki Sato ◽  
Armando T. Quitain ◽  
Kilyoon Kang ◽  
Hiroyuki Daimon ◽  
Koichi Fujie

Author(s):  
M.K. Lamvik ◽  
L.L. Klatt

Tropomyosin paracrystals have been used extensively as test specimens and magnification standards due to their clear periodic banding patterns. The paracrystal type discovered by Ohtsuki1 has been of particular interest as a test of unstained specimens because of alternating bands that differ by 50% in mass thickness. While producing specimens of this type, we came across a new paracrystal form. Since this new form displays aligned tropomyosin molecules without the overlaps that are characteristic of the Ohtsuki-type paracrystal, it presents a staining pattern that corresponds to the amino acid sequence of the molecule.


1989 ◽  
Vol 61 (03) ◽  
pp. 437-441 ◽  
Author(s):  
Cindra Condra ◽  
Elka Nutt ◽  
Christopher J Petroski ◽  
Ellen Simpson ◽  
P A Friedman ◽  
...  

SummaryThe present work reports the discovery and charactenzation of an anticoagulant protein in the salivary gland of the giant bloodsucking leech, H. ghilianii, which is a specific and potent inhibitor of coagulation factor Xa. The inhibitor, purified to homogeneity, displayed subnanomolar inhibition of bovine factor Xa and had a molecular weight of approximately 15,000 as deduced by denaturing SDS-PAGE. The amino acid sequence of the first 43 residues of the H. ghilianii derived inhibitor displayed a striking homology to antistasin, the recently described subnanomolar inhibitor of factor Xa isolated from the Mexican leech, H. officinalis. Antisera prepared to antistasin cross-reacted with the H. ghilianii protein in Western Blot analysis. These data indicate that the giant Amazonian leech, H. ghilianii, and the smaller Mexican leech, H. officinalrs, have similar proteins which disrupt the normal hemostatic clotting mechanisms in their mammalian host’s blood.


1993 ◽  
Vol 69 (03) ◽  
pp. 217-220 ◽  
Author(s):  
Jonathan B Rosenberg ◽  
Peter J Newman ◽  
Michael W Mosesson ◽  
Marie-Claude Guillin ◽  
David L Amrani

SummaryParis I dysfibrinogenemia results in the production of a fibrinogen molecule containing a functionally abnormal γ-chain. We determined the basis of the molecular defect using polymerase chain reaction (PCR) to amplify the γ-chain region of the Paris I subject’s genomic DNA. Comparative sequence analysis of cloned PCR segments of normal and Paris I genomic DNA revealed only an A→G point mutation occurring at nucleotide position 6588 within intron 8 of the Paris I γ-chain gene. We examined six normal individuals and found only normal sequence in this region, indicating that this change is not likely to represent a normal polymorphism. This nucleotide change leads to a 45 bp fragment being inserted between exons 8 and 9 in the mature γparis I chain mRNA, and encodes a 15 amino acid insert after γ350 [M-C-G-E-A-L-P-M-L-K-D-P-C-Y]. Alternative splicing of this region from intron 8 into the mature Paris I γ-chain mRNA also results after translation into a substitution of S for G at position γ351. Biochemical studies of 14C-iodoacetamide incorporation into disulfide-reduced Paris I and normal fibrinogen corroborated the molecular biologic predictions that two additional cysteine residues exist within the γpariS I chain. We conclude that the insertion of this amino acid sequence leads to a conformationallyaltered, and dysfunctional γ-chain in Paris I fibrinogen.


1979 ◽  
Vol 42 (05) ◽  
pp. 1652-1660 ◽  
Author(s):  
Francis J Morgan ◽  
Geoffrey S Begg ◽  
Colin N Chesterman

SummaryThe amino acid sequence of the subunit of human platelet factor 4 has been determined. Human platelet factor 4 consists of identical subunits containing 70 amino acids, each with a molecular weight of 7,756. The molecule contains no methionine, phenylalanine or tryptophan. The proposed amino acid sequence of PF4 is: Glu-Ala-Glu-Glu-Asp-Gly-Asp-Leu-Gln-Cys-Leu-Cys-Val-Lys-Thr-Thr-Ser- Gln-Val-Arg-Pro-Arg-His-Ile-Thr-Ser-Leu-Glu-Val-Ile-Lys-Ala-Gly-Pro-His-Cys-Pro-Thr-Ala-Gin- Leu-Ile-Ala-Thr-Leu-Lys-Asn-Gly-Arg-Lys-Ile-Cys-Leu-Asp-Leu-Gln-Ala-Pro-Leu-Tyr-Lys-Lys- Ile-Ile-Lys-Lys-Leu-Leu-Glu-Ser. From consideration of the homology with p-thromboglobulin, disulphide bonds between residues 10 and 36 and between residues 12 and 52 can be inferred.


Sign in / Sign up

Export Citation Format

Share Document