Practical guide on MALDI-TOF MS method development for high throughput profiling of pharmaceutically relevant, small molecule chemical reactions

Tetrahedron ◽  
2020 ◽  
Vol 76 (36) ◽  
pp. 131434
Author(s):  
William D. Blincoe ◽  
Shishi Lin ◽  
Spencer D. Dreher ◽  
Huaming Sheng
2017 ◽  
Vol 23 (3) ◽  
pp. 105-115 ◽  
Author(s):  
Ping Sui ◽  
Hiroyuki Watanabe ◽  
Konstantin Artemenko ◽  
Wei Sun ◽  
Georgy Bakalkin ◽  
...  

Spinal cord as a connection between brain and peripheral nervous system is an essential material for studying neural transmission, especially in pain-related research. This study was the first to investigate pain-related neuropeptide distribution in rat spinal cord using a matrix-assisted laser desorption ionization-time of flight imaging mass spectrometry (MALDI TOF MS) approach. The imaging workflow was evaluated and showed that MALDI TOF MS provides efficient resolution and robustness for neuropeptide imaging in rat spinal cord tissue. The imaging result showed that in naive rat spinal cord the molecular distribution of haeme, phosphatidylcholine, substance P and thymosin beta 4 were well in line with histological features. Three groups of pain-related neuropeptides, which are cleaved from prodynorphin, proenkephalin and protachykinin-1 proteins were detected. All these neuropeptides were found predominantly localized in the dorsal spinal cord and each group had unique distribution pattern. This study set the stage for future MALDI TOF MS application to elucidate signalling mechanism of pain-related diseases in small animal models.


2010 ◽  
Vol 4 (8-9) ◽  
pp. 697-705 ◽  
Author(s):  
Henning G. Hansen ◽  
Julie Overgaard ◽  
Maria Lajer ◽  
Frantisek Hubalek ◽  
Peter Højrup ◽  
...  

ChemInform ◽  
2010 ◽  
Vol 32 (48) ◽  
pp. no-no
Author(s):  
Thomas Wenzel ◽  
Thomas Froehlich ◽  
Kathrin Strassburger ◽  
Susann Richter ◽  
Jacqueline Bimmler ◽  
...  

2016 ◽  
Vol 63 (5) ◽  
pp. 347-355 ◽  
Author(s):  
S. Miescher Schwenninger ◽  
S. Freimüller Leischtfeld ◽  
C. Gantenbein-Demarchi

Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4347
Author(s):  
You-Ran Jang ◽  
Kyoungwon Cho ◽  
Se Won Kim ◽  
Susan B. Altenbach ◽  
Sun-Hyung Lim ◽  
...  

Because high-molecular-weight glutenin subunits (HMW-GS) are important contributors to wheat end-use quality, there is a need for high-throughput identification of HMW-GS in wheat genetic resources and breeding lines. We developed an optimized method using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) to distinguish individual HMW-GS by considering the effects of the alkylating reagent in protein extraction, solvent components, dissolving volume, and matrix II components. Using the optimized method, 18 of 22 HMW-GS were successfully identified in standard wheat cultivars by differences in molecular weights or by their associations with other tightly linked subunits. Interestingly, 1Bx7 subunits were divided into 1Bx7 group 1 and 1Bx7 group 2 proteins with molecular weights of about 82,400 and 83,000 Da, respectively. Cultivars containing the 1Bx7 group 2 proteins were distinguished from those containing 1Bx7OE using well-known DNA markers. HMW-GS 1Ax2* and 1Bx6 and 1By8 and 1By8*, which are difficult to distinguish due to very similar molecular weights, were easily identified using RP-HPLC. To validate the method, HMW-GS from 38 Korean wheat varieties previously evaluated by SDS-PAGE combined with RP-HPLC were analyzed by MALDI-TOF-MS. The optimized MALDI-TOF-MS method will be a rapid, high-throughput tool for selecting lines containing desirable HMW-GS for breeding efforts.


Sign in / Sign up

Export Citation Format

Share Document