Geometries and properties of guanine–BH3 complex: an investigation with density functional theory (DFT) method

2004 ◽  
Vol 682 (1-3) ◽  
pp. 47-53 ◽  
Author(s):  
Shiguo Zhang ◽  
Hong Li ◽  
Pin Yang ◽  
Sidian Li
2021 ◽  
Author(s):  
Agnieszka Kącka-Zych ◽  
Radomir Jasinski

Conversion of N-trialkylsilyloxy nitronates into bicyclic isoxazoline derivatives has been explored using Density Functional Theory (DFT) method within the context of the Molecular Electron Density Theory (MEDT) at the B97XD(PCM)/6-311G(d,p)...


RSC Advances ◽  
2016 ◽  
Vol 6 (38) ◽  
pp. 31968-31975 ◽  
Author(s):  
Shuai Zhao ◽  
Liguo Gao ◽  
Chunfeng Lan ◽  
Shyam S. Pandey ◽  
Shuzi Hayase ◽  
...  

In this work, we present a detailed first-principles investigation on the stoichiometric and oxygen-deficient structures of double perovskites, Sr2BMoO6 (B = Mg, Co and Ni), using the density functional theory (DFT) method.


2020 ◽  
Author(s):  
Saeedeh Mohammadi ◽  
Mohammad Esmailpour ◽  
Mina Mohammadi

Abstract This paper is a new step in helping the treatment of coronavirus by improving the performance of chloroquine drug. For this purpose, we propose a complex of chloroquine drug with graphene nanoribbon (GNR) scheme. We compute the structural and electrical properties and absorption of chloroquine (C18H26ClN3) and GNR complex using the density functional theory (DFT) method. By creating a drug and GNR complex, the density of states of electrons increases and the energy gap decreases compared to the chloroquine. Also, using absorption calculations and spectrums such as infrared and UV-Vis spectra, we showed that GNR is a suitable structure for creating chloroquine drug complex. Our results show that the dipole moment, global softness and electrophilicity for the drug complex increases compared to the non-complex state. Our calculations can be useful for increasing performance and reducing the side effects of chloroquine, and thus can be effective in treating coronavirus.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Ali I. Ismail

Ibrutinib, a Bruton’s tyrosine kinase that plays an essential role in the B-cell development and cancer cells, has been recently approved to treat chronic, lymphocytic, and other types of leukemia. This study focused on investigating ibrutinib by its electronic transitions, vibrational frequencies, and electrospray mass spectra. The experimental peaks for electronic spectrum were found at 248.0 and 281.0 nm, whereas the νC = 0 stretching frequency was found at 1652.4 and 1639.19 cm−1. These experimental properties were compared with the corresponding theoretical calculations in which density functional theory was applied. The optimized structure was obtained with the calculations using a hybrid function (B3LYP) and high-level basis sets [6-311G++(d,p)]. Most of the calculated vibrational frequencies showed a relatively good agreement with the experimental ones. The electronic transitions of ibrutinib calculated using time-dependent DFT method were performed at two different solvation methods: PCM and SMD. The mass spectrum of ibrutinib, its fragments, and its isotopic pattern agreed well with the expected spectra.


2020 ◽  
Vol 7 (22) ◽  
pp. 3656-3663
Author(s):  
Kun Yuan ◽  
Peng Wang ◽  
Hui-Xue Li ◽  
Yan-Zhi Liu ◽  
Ling-Ling Lv

The photochemical deracemization mechanism of the chiral allene 3-(3,3-dimethyl-1-buten-1-ylidene)-2-piperidinone in the presence of photosensitizer thioxanthone is theoretically investigated by using a density functional theory (DFT) method.


Catalysts ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 359 ◽  
Author(s):  
Hanwei Li ◽  
Mingliang Luo ◽  
Guohong Tao ◽  
Song Qin

Computational investigations on the bisphospholanoethane (BPE)-ligated Cu-catalyzed enantioselective addition of enynes to ketones were performed with the density functional theory (DFT) method. Two BPE-mesitylcopper (CuMes) catalysts, BPE-CuMes and (S,S)-Ph-BPE–CuMes, were employed to probe the reaction mechanism with the emphasis on stereoselectivity. The calculations on the BPE-CuMes system indicate that the active metallized enyne intermediate acts as the catalyst for the catalytic cycle. The catalytic cycle involves two steps: (1) ketone addition to the alkene moiety of the metallized enyne; and (2) metallization of the enyne followed by the release of product with the recovery of the active metallized enyne intermediate. The first step accounts for the distribution of the products, and therefore is the stereo-controlling step in chiral systems. In the chiral (S,S)-Ph-BPE–CuMes system, the steric hindrance is vital for the distribution of products and responsible for the stereoselectivity of this reaction. The steric hindrance between the phenyl ring of the two substrates and groups at the chiral centers in the ligand skeleton is identified as the original of the stereoselectivity for the titled reaction.


2010 ◽  
Vol 09 (supp01) ◽  
pp. 65-75 ◽  
Author(s):  
JING LI ◽  
WAN-YI JIANG

The trimethylamine-catalyzed Baylis–Hillman reaction of formaldehyde and vinylaldehyde has been studied with the density functional theory (DFT) method of B3LYP/6-31+G(d,p). In the gas phase, the reaction involves an amine–formaldehyde–vinylaldehyde trimolecular addition transition structure followed by rate-determining intramolecular 1,3-hydrogen shift. When a bulk solvent effect of water was considered with conductor-like polarizable continuum model (CPCM), the reaction was found to follow the sequence of Michael-addition of amine to vinylaldehyde (step 1), addition of formaldehyde (step 2), and 1,3-hydrogen shift (step 3), with the 1,3-hydrogen shift as rate-determining. The overall reaction barrier is significantly reduced. When a molecule of water is involved in the reaction, the 1,3-hydrogen shift is significantly promoted so that the rate-determining step becomes the C–C bond formation. The calculated overall reaction barrier is in agreement with experimental observations.


RSC Advances ◽  
2016 ◽  
Vol 6 (63) ◽  
pp. 58458-58468 ◽  
Author(s):  
Abdolvahab Seif ◽  
Khaled Azizi

The adsorption behavior of hydrogen molecule (H2) on neutral and charged states of C-, Si- and P-doped boron nitride nanosheets (BNNSs), is investigated using density functional theory (DFT) method.


2014 ◽  
Vol 28 (27) ◽  
pp. 1430018 ◽  
Author(s):  
Xingxing Jiang ◽  
Lei Kang ◽  
Siyang Luo ◽  
Pifu Gong ◽  
Ming-Hsien Lee ◽  
...  

Nonlinear optical (NLO) crystals are very important optoelectronic functional materials and their developments have significantly contributed to the progress of laser science and technology for decades. In order to explore new NLO crystals with superior performances, it is greatly desirable to understand the intrinsic relationship between the macroscopic optical properties and microscopic structural features in crystals. In this paper, the applications of density functional theory (DFT) method to the elucidation of the structure-property relationship and to the exploration on novel NLO materials in the ultraviolet and infrared spectrum regions are reviewed. The great success in the linear and NLO property predictions has been achieved using the first-principles computational simulations, and the mechanism understanding obtained by various analysis tools can give substantial guidance to the search and design of new NLO crystals.


Author(s):  
V. A. Babkin ◽  
D. S. Andreev ◽  
E. S. Titova ◽  
A. V. Ignatov ◽  
R. O. Boldyrev ◽  
...  

In this work, we performed a quantum-chemical calculation of some epoxy molecules: 1,2-epoxy-butene, 1,2-epoxy-2-methylpropane, 1,2 epoxyethane by the density functional theory DFT. An optimized geometric and electronic structure of these compounds is obtained. It was found that the studied epoxides belong to the class of very weak СH-acids (pKa = 28-30).


Sign in / Sign up

Export Citation Format

Share Document