Whole-genome amplification-based GenomiPhi for multiple genomic analysis of individual early porcine embryos

2011 ◽  
Vol 75 (8) ◽  
pp. 1543-1549 ◽  
Author(s):  
Eri Akasaka ◽  
Akio Ozawa ◽  
Hironori Mori ◽  
Yamato Mizobe ◽  
Mitsutoshi Yoshida ◽  
...  
2020 ◽  
Vol 21 (19) ◽  
pp. 7366
Author(s):  
Chiara Carretta ◽  
Selene Mallia ◽  
Elena Genovese ◽  
Sandra Parenti ◽  
Sebastiano Rontauroli ◽  
...  

Single-cell genomics has become the method of choice for the study of heterogeneous cell populations and represents an elective application in defining the architecture and clonal evolution in hematological neoplasms. Reconstructing the clonal evolution of a neoplastic population therefore represents the main way to understand more deeply the pathogenesis of the neoplasm, but it is also a potential tool to understand the evolution of the tumor population with respect to its response to therapy. Pre-analytical phase for single-cell genomics analysis is crucial to obtain a cell population suitable for single-cell sorting, and whole genome amplification is required to obtain the necessary amount of DNA from a single cell in order to proceed with sequencing. Here, we evaluated the impact of different methods of cellular immunostaining, fixation and whole genome amplification on the efficiency and yield of single-cell sequencing.


RSC Advances ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 4617-4621
Author(s):  
Jing Tu ◽  
Yi Qiao ◽  
Yuhan Luo ◽  
Naiyun Long ◽  
Zuhong Lu

Monitoring multiple displacement amplification by fluorescence signals.


Forests ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 444
Author(s):  
Fumio Nakazawa ◽  
Yoshihisa Suyama ◽  
Satoshi Imura ◽  
Hideaki Motoyama

Pollen taxa in sediment samples can be identified based on morphology. However, closely related species do not differ substantially in pollen morphology, and accurate identification is generally limited to genera or families. Because many pollen grains in glaciers contain protoplasm, genetic information obtained from pollen grains should enable the identification of plant taxa at the species level. In the present study, species identification of Pinus pollen grains was attempted using whole-genome amplification (WGA). We used pollen grains extracted from surface snow (depth, 1.8–1.9 m) from the Belukha glacier in the summer of 2003. WGA was performed using a single pollen grain. Some regions of the chloroplast genome were amplified by PCR, and the DNA products were sequenced to identify the pollen grain. Pinus includes approximately 111 recognized species in two subgenera, four sections, and 11 subsections. The tree species Pinus sibirica and P. sylvestris are currently found at the periphery of the glacier. We identified the pollen grains from the Belukha glacier to the level of section or subsection to which P. sibirica and P. sylvestris belong. Moreover, we specifically identified two pollen grains as P. sibirica or P. cembra. Fifteen species, including P. sibirica, were candidates for the remaining pollen grain.


Sign in / Sign up

Export Citation Format

Share Document