High content screening: seeing is believing

2010 ◽  
Vol 28 (5) ◽  
pp. 237-245 ◽  
Author(s):  
Fabian Zanella ◽  
James B. Lorens ◽  
Wolfgang Link
2011 ◽  
Vol 15 (4) ◽  
pp. 534-539 ◽  
Author(s):  
Priscille Brodin ◽  
Thierry Christophe

Lab on a Chip ◽  
2011 ◽  
Vol 11 (1) ◽  
pp. 104-114 ◽  
Author(s):  
Min Jung Kim ◽  
Su Chul Lee ◽  
Sukdeb Pal ◽  
Eunyoung Han ◽  
Joon Myong Song

2017 ◽  
Vol 80 ◽  
pp. 170-179 ◽  
Author(s):  
Ben L. Callif ◽  
Brian Maunze ◽  
Nick L. Krueger ◽  
Matthew T. Simpson ◽  
Murray G. Blackmore

2011 ◽  
Vol 16 (8) ◽  
pp. 925-931 ◽  
Author(s):  
Amy Emery ◽  
David A. Sorrell ◽  
Stacy Lawrence ◽  
Emma Easthope ◽  
Mark Stockdale ◽  
...  

Aurora A kinase is a key regulator of mitosis, which is upregulated in several human cancers, making it a potential target for anticancer therapeutics. Consequently, robust medium- to high-throughput cell-based assays to measure Aurora A kinase activity are critical for the development of small-molecule inhibitors. Here the authors compare measurement of the phosphorylation of two Aurora A substrates previously used in high-content screening Aurora A assays, Aurora A itself and TACC3, with a novel substrate Lats2. Using antibodies directed against phosphorylated forms of Aurora A (pThr288), P-TACC3 (pSer558), and P-Lats2 (pSer83), the authors investigate their suitability in parallel for development of a cell-based assay using several reference Aurora inhibitors: MLN8054, VX680, and AZD1152-HQPA. They validate a combined assay of target-specific phosphorylation of Lats2 at the centrosome and an increase in mitotic index as a measure of Aurora A activity. The assay is both sensitive and robust and has acceptable assay performance for high-throughput screening or potency estimation from concentration–response assays. It has the advantage that it can be carried out using a commercially available monoclonal antibody against phospho-Lats2 and the widely available Cellomics ArrayScan HCS reader and thus represents a significant addition to the tools available for the identification of Aurora A specific inhibitors.


2016 ◽  
Vol 26 (2) ◽  
pp. 213-225 ◽  
Author(s):  
Gregory Nierode ◽  
Paul S. Kwon ◽  
Jonathan S. Dordick ◽  
Seok-Joon Kwon

2020 ◽  
Author(s):  
Juan Diez ◽  
Sumitha Rajendrarao ◽  
Shadi A. Baajour ◽  
Praathibha Sripadhan ◽  
Timothy P. Spicer ◽  
...  

ABSTRACTDespite recent advances in melanoma drug discovery, the average overall survival of patients with late stage metastatic melanoma is approximately 3 years, suggesting a need for new approaches and melanoma therapeutic targets. Previously we identified heterogeneous nuclear ribonucleoprotein H2 as a potential target of anti-melanoma compound 2155-14 (Palrasu et al, Cell Physiol Biochem 2019;53:656-86). In the present study, we endeavored to develop an assay to enable a high throughput screening campaign to identify drug-like molecules acting via down regulation of heterogeneous nuclear ribonucleoprotein H that can be used for melanoma therapy and research.ResultsWe established a cell-based platform using metastatic melanoma cell line WM266-4 expressing hnRNPH2 conjugated with green fluorescent protein to enable assay development and screening. High Content Screening assay was developed and validated in 384 well plate format, followed by miniaturization to 1,536 well plate format. All plate-based QC parameters were acceptable: %CV = 6.7±0.3, S/B = 21±2.1, Z’ = 0.75±0.04. Pilot screen of FDA-approved drug library (n=1,400 compounds) demonstrated hit rate of 0.5%. Two compounds demonstrated pharmacological response and were authenticated by western blot analysis.ConclusionsWe developed a highly robust HTS-amenable high content screening assay capable of monitoring down regulation of hnRNPH2. This assay is thus capable of identifying authentic down regulators of hnRNPH1 and 2 in a large compound collection and, therefore, is amenable to a large-scale screening effort.


Sign in / Sign up

Export Citation Format

Share Document