Modified atmosphere packaging for shelf life extension of fresh-cut apples

2015 ◽  
Vol 46 (2) ◽  
pp. 320-330 ◽  
Author(s):  
Giovanna Cortellino ◽  
Serena Gobbi ◽  
Giulia Bianchi ◽  
Anna Rizzolo
2013 ◽  
Vol 63 (2) ◽  
pp. 87-94 ◽  
Author(s):  
Ranjith Kalleda ◽  
Inyee Han ◽  
Joe Toler ◽  
Feng Chen ◽  
Hyun Kim ◽  
...  

HortScience ◽  
2012 ◽  
Vol 47 (8) ◽  
pp. 1113-1116 ◽  
Author(s):  
M. Helena Gomes ◽  
Randolph M. Beaudry ◽  
Domingos P.F. Almeida

The respiratory behavior of fresh-cut melon under modified atmosphere packaging at various temperatures was characterized to assess the potential for shelf life extension through low-oxygen and to generate information for the development of appropriate packaging conditions. Cantaloupe melon (Cucumis melo var. cantalupensis ‘Olympic Gold’) cubes were packaged and stored at 0, 5, 10, and 15 °C. Packages attained gas equilibrium after 5 days at 10 °C, 6 days at 5 °C, and 10 days at 0 °C. In cubes stored at 15 °C, decay started before steady-state gas levels were reached. Respiration rates were measured and respiratory quotient calculated once steady-state O2 and CO2 partial pressures were achieved inside the packages. O2 uptake increased with temperature and O2 partial pressure (pO2 pkg), according to a Michaelis-Menten kinetics described by = [( × pO2 pkg)/( + pO2 pkg)]. Respiratory parameters were modeled as an exponential function of temperature: = {[1.34 × 10−17 × e(0.131 × T) × pO2 pkg]/[1.15 × 10−24 × e(0.193 × T) + pO2 pkg]} (R2 = 0.95), Q10 = 3.7, and Ea = 84 kJ·mol−1. A good fit to the experimental data was also obtained considering as constant: RO2 = {[4.36 × 10−14 × e(0.102 × T) × pO2 pkg]/[0.358 + pO2 pkg]} (R2 = 0.93), Q10 = 2.8, and Ea = 66 kJ·mol−1. These results provide fundamental information to predict package permeability and steady-state pO2 pkg required to prevent anaerobic conditions and maximize shelf life of fresh-cut cantaloupe. The kinetics of respiration as a function of pO2 suggests that no significant reductions in respiration rate of fresh-cut cantaloupe can be achieved by lowering O2 levels.


2005 ◽  
Vol 68 (10) ◽  
pp. 2201-2207 ◽  
Author(s):  
NIKOLAOS POURNIS ◽  
AIKATERINI PAPAVERGOU ◽  
ANASTASIA BADEKA ◽  
MICHAEL G. KONTOMINAS ◽  
IOANNIS N. SAVVAIDIS

The present work evaluated the quality and freshness characteristics and the effect of modified atmosphere packaging (MAP) on the shelf-life extension of refrigerated Mediterranean mullet using microbiological, biochemical, and sensory analyses. Fresh open sea red mullet (Mullus surmuletus) were packaged in four different atmospheres: M1, 10%/20%/70% (O2/CO2/N2); M2, 10%/40%/50% (O2/CO2/N2); M3, 10%/60%/30% (O2/CO2/N2); identical fish samples were packaged in air. All fish were kept under refrigeration (4 ± 0.5°C) for 14 days. Of the three gas atmospheres, the 10%/40%/50% (M2) and 10%/60%/30% (M3) gas mixtures were the most effective for inhibiting growth of aerobic microflora in mullet samples until day 10 of refrigerated storage. H2S-producing bacteria and pseudomonads were part of the mullet microflora and their growth was partly inhibited under MAP conditions. Between these two bacterial groups, H2S-producing bacteria (including Shewanella putrefaciens) were dominant toward the end of the storage period, regardless of the packaging conditions. Brochothrix thermosphacta and lactic acid bacteria were found to be members of the final microbial flora of MAP and air-packaged mullet, whereas the Enterobacteriaceae population was lower than other bacterial groups. Of the chemical freshness indices determined, thiobarbituric acid values were variable in mullet samples irrespective of packaging conditions indicative of no specific oxidative rancidity trend. Based on sensorial data and aerobic plate count, trimethylamine nitrogen and total volatile basic nitrogen limit values in the range of ca. 15 to 23 and 52 to 60 mg N/100 g of fish muscle were obtained, respectively, for mullet packaged under modified atmosphere and air. Sensory analyses (odor and taste attributes) showed that the limit of sensorial acceptability was reached after ca. 6 days for the samples packaged in air, 8 days for the M1 and M3 samples, and after 10 days for the M2 samples. Respective shelf-life extension for fresh whole mullet was ca. 2 days (M1 and M3 gas mixtures), and 4 days (M2 gas mixture).


2010 ◽  
Vol 34 (2) ◽  
pp. 399-424 ◽  
Author(s):  
POULOSE YESUDHASON ◽  
TERALANDUR KRISHNASWAMY SRINIVASA GOPAL ◽  
CHANDRAGIRI NARAYANARAO RAVISHANKAR ◽  
K.V. LALITHA ◽  
ASHOK KUMAR

Sign in / Sign up

Export Citation Format

Share Document