scholarly journals Human artificial membranes in (bio)analytical science: Potential for in vitro prediction of intestinal absorption-A review

Author(s):  
Enrique Javier Carrasco-Correa ◽  
Julia Ruiz-Allica ◽  
Juan Francisco Rodríguez-Fernández ◽  
Manuel Miró
2011 ◽  
Vol 8 (4) ◽  
pp. 392-397 ◽  
Author(s):  
Boontarika Boonyapiwat ◽  
Narong Sarisuta ◽  
Sarinnate Kunastitchai

2018 ◽  
Vol 15 (9) ◽  
pp. 1305-1311 ◽  
Author(s):  
Giovanni Monastra ◽  
Yula Sambuy ◽  
Simonetta Ferruzza ◽  
Daniela Ferrari ◽  
Giulia Ranaldi

2019 ◽  
Vol 18 (26) ◽  
pp. 2209-2229 ◽  
Author(s):  
Hai Pham-The ◽  
Miguel Á. Cabrera-Pérez ◽  
Nguyen-Hai Nam ◽  
Juan A. Castillo-Garit ◽  
Bakhtiyor Rasulev ◽  
...  

One of the main goals of in silico Caco-2 cell permeability models is to identify those drug substances with high intestinal absorption in human (HIA). For more than a decade, several in silico Caco-2 models have been made, applying a wide range of modeling techniques; nevertheless, their capacity for intestinal absorption extrapolation is still doubtful. There are three main problems related to the modest capacity of obtained models, including the existence of inter- and/or intra-laboratory variability of recollected data, the influence of the metabolism mechanism, and the inconsistent in vitro-in vivo correlation (IVIVC) of Caco-2 cell permeability. This review paper intends to sum up the recent advances and limitations of current modeling approaches, and revealed some possible solutions to improve the applicability of in silico Caco-2 permeability models for absorption property profiling, taking into account the above-mentioned issues.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 595
Author(s):  
Norraseth Kaeokhamloed ◽  
Emillie Roger ◽  
Jérôme Béjaud ◽  
Nolwenn Lautram ◽  
Florence Manero ◽  
...  

Standard models used for evaluating the absorption of nanoparticles like Caco-2 ignore the presence of vascular endothelium, which is a part of the intestinal multi-layered barrier structure. Therefore, a coculture between the Caco-2 epithelium and HMEC-1 (Human Microvascular Endothelial Cell type 1) on a Transwell® insert has been developed. The model has been validated for (a) membrane morphology by transmission electron microscope (TEM); (b) ZO-1 and β-catenin expression by immunoassay; (c) membrane integrity by trans-epithelial electrical resistance (TEER) measurement; and (d) apparent permeability of drugs from different biopharmaceutical classification system (BCS) classes. Lipid nanocapsules (LNCs) were formulated with different sizes (55 and 85 nm) and surface modifications (DSPE-mPEG (2000) and stearylamine). Nanocapsule integrity and particle concentration were monitored using the Förster resonance energy transfer (FRET) technique. The result showed that surface modification by DSPE-mPEG (2000) increased the absorption of 55-nm LNCs in the coculture model but not in the Caco-2. Summarily, the coculture model was validated as a tool for evaluating the intestinal absorption of drugs and nanoparticles. The new coculture model has a different LNCs absorption mechanism suggesting the importance of intestinal endothelium and reveals that the surface modification of LNCs can modify the in vitro oral absorption.


2012 ◽  
Vol 33 (5) ◽  
pp. 246-256 ◽  
Author(s):  
Bilal S. Abuasal ◽  
Hisham Qosa ◽  
Paul W. Sylvester ◽  
Amal Kaddoumi

2016 ◽  
Vol 43 (5) ◽  
pp. 812-829 ◽  
Author(s):  
Gurunath Surampalli ◽  
Madhuchander Satla ◽  
Basavaraj K. Nanjwade ◽  
Paragouda A. Patil

1980 ◽  
Vol 59 (5) ◽  
pp. 373-380 ◽  
Author(s):  
B. Elsenhans ◽  
U. Süfke ◽  
R. Blume ◽  
W. F. Caspary

1. In the present investigation with rings of everted rat small intestine, carbohydrate gelling agents (plant polysaccharides) such as guaran, pectin, tragacanth, carubin and carrageenan were employed to study their direct effect on intestinal absorption of α-methyl-d-glucoside, d-galactose, l-leucine and l-phenylalanine. 2. Inhibition was found to correlate with the viscosity of the incubation medium, a function only of the polysaccharide concentration, and was independent of other properties of the carbohydrate gelling agents. 3. Reversal of this inhibition was achieved either by washing the tissue free of polysaccharide or by raising tissue agitation. 4. Uptake kinetics in polysaccharide-containing solutions revealed a marked increase of the apparent Michaelis constant although the maximal transport capacity remained essentially unaltered. 5. Since there was no binding of the substrate by the polysaccharides under experimental conditions as judged by a membrane filtration technique, it is concluded that carbohydrate gelling agents may impair intestinal absorption by means of an increased unstirred layer resistance.


1979 ◽  
Vol 20 (1) ◽  
pp. 125-132 ◽  
Author(s):  
Robert J. Chertok ◽  
Lyle B. Sasser ◽  
Michael F. Callaham ◽  
G.E. Jarboe

Sign in / Sign up

Export Citation Format

Share Document