The Influence of Carbohydrate Gelling Agents on Rat Intestinal Transport of Monosaccharides and Neutral Amino Acids in Vitro

1980 ◽  
Vol 59 (5) ◽  
pp. 373-380 ◽  
Author(s):  
B. Elsenhans ◽  
U. Süfke ◽  
R. Blume ◽  
W. F. Caspary

1. In the present investigation with rings of everted rat small intestine, carbohydrate gelling agents (plant polysaccharides) such as guaran, pectin, tragacanth, carubin and carrageenan were employed to study their direct effect on intestinal absorption of α-methyl-d-glucoside, d-galactose, l-leucine and l-phenylalanine. 2. Inhibition was found to correlate with the viscosity of the incubation medium, a function only of the polysaccharide concentration, and was independent of other properties of the carbohydrate gelling agents. 3. Reversal of this inhibition was achieved either by washing the tissue free of polysaccharide or by raising tissue agitation. 4. Uptake kinetics in polysaccharide-containing solutions revealed a marked increase of the apparent Michaelis constant although the maximal transport capacity remained essentially unaltered. 5. Since there was no binding of the substrate by the polysaccharides under experimental conditions as judged by a membrane filtration technique, it is concluded that carbohydrate gelling agents may impair intestinal absorption by means of an increased unstirred layer resistance.

1983 ◽  
Vol 61 (10) ◽  
pp. 1129-1137 ◽  
Author(s):  
A. B. R. Thomson

Failure to account for the effect of the unstirred water layer and the contribution of passive permeation will lead to errors in the estimation of the kinetic constants of glucose uptake into the intestine. It is widely accepted that variations in the concentration of sodium in the bulk phase profoundly influence the rate of uptake of glucose in the intestine, but the kinetic basis for this effect remains in dispute. Accordingly, a previously validated in vitro technique was used to assess the effect of Na+ on the uptake of glucose into rabbit jejunum under conditions selected to reduce the unstirred layer resistance. Varying Na+ had no effect on the uptake of lauryl alcohol and therefore on unstirred layer resistance. The passive permeability coefficient for glucose uptake was estimated from the uptake of L-glucose, of D-glucose at 4 °C, or in the presence of 1 mM phlorizin or 40 mM galactose. The permeability for glucose increased as Na+ rose. The values of both the maximal transport rate and the Michaelis constant (Km) were influenced by Na+. A linear relationship was noted between Na+ and the maximal transport rate; the value of Km fell as Na+ was increased to 75 mequiv./L, but Km did not decline further with higher values of Na+. These results support the theoretical predictions of the presence of both an affinity and a velocity effect of the sodium gradient on the intestinal transport system for glucose.


1984 ◽  
Vol 246 (5) ◽  
pp. G515-G520 ◽  
Author(s):  
J. Selhub ◽  
G. M. Powell ◽  
I. H. Rosenberg

The mechanism of intestinal absorption of 5-methyltetrahydrofolate (5- CH3THF ) has been the topic of some controversy. In the present study, we have used enzymatically prepared 5- CH3THF to characterize transport by rat intestinal loops in vivo and everted jejunal sacs in vitro. Transport of 5- CH3THF is saturable (Km = 5.2 microM) and highly pH dependent, with the rate of maximal transport occurring at pH 5.8. Transport is competitively inhibited by folic acid (Ki = 4.2 microM) and methotrexate (Ki = 4.65 microM). Metabolic poisons and anaerobiosis greatly reduce 5- CH3THF transport. We conclude that 5- CH3THF transport in the rat intestine occurs by the same structure-specific mechanism responsible for the transport of unreduced folic acid and other monoglutamyl folates.


Author(s):  
D. Chrétien ◽  
D. Job ◽  
R.H. Wade

Microtubules are filamentary structures found in the cytoplasm of eukaryotic cells, where, together with actin and intermediate filaments, they form the components of the cytoskeleton. They have many functions and show various levels of structural complexity as witnessed by the singlet, doublet and triplet structures involved in the architecture of centrioles, basal bodies, cilia and flagella. The accepted microtubule model consists of a 25 nm diameter hollow tube with a wall made up of 13 paraxial protofilaments (pf). Each pf is a string of aligned tubulin dimers. Some results have suggested that the pfs follow a superhelix. To understand how microtubules function in the cell an accurate model of the surface lattice is one of the requirements. For example the 9x2 architecture of the axoneme will depend on the organisation of its component microtubules. We should also note that microtubules with different numbers of pfs have been observed in thin sections of cellular and of in-vitro material. An outstanding question is how does the surface lattice adjust to these different pf numbers?We have been using cryo-electron microscopy of frozen-hydrated samples to study in-vitro assembled microtubules. The experimental conditions are described in detail in this reference. The results obtained in conjunction with thin sections of similar specimens and with axoneme outer doublet fragments have already allowed us to characterise the image contrast of 13, 14 and 15 pf microtubules on the basis of the measured image widths, of the the image contrast symmetry and of the amplitude and phase behaviour along the equator in the computed Fourier transforms. The contrast variations along individual microtubule images can be interpreted in terms of the geometry of the microtubule surface lattice. We can extend these results and make some reasonable predictions about the probable surface lattices in the case of other pf numbers, see Table 1. Figure 1 shows observed images with which these predictions can be compared.


1981 ◽  
Vol 45 (03) ◽  
pp. 290-293 ◽  
Author(s):  
Peter H Levine ◽  
Danielle G Sladdin ◽  
Norman I Krinsky

SummaryIn the course of studying the effects on platelets of the oxidant species superoxide (O- 2), Of was generated by the interaction of xanthine oxidase plus xanthine. Surprisingly, gel-filtered platelets, when exposed to xanthine oxidase in the absence of xanthine substrate, were found to generate superoxide (O- 2), as determined by the reduction of added cytochrome c and by the inhibition of this reduction in the presence of superoxide dismutase.In addition to generating Of, the xanthine oxidase-treated platelets display both aggregation and evidence of the release reaction. This xanthine oxidase induced aggreagtion is not inhibited by the addition of either superoxide dismutase or cytochrome c, suggesting that it is due to either a further metabolite of O- 2, or that O- 2 itself exerts no important direct effect on platelet function under these experimental conditions. The ability of Of to modulate platelet reactions in vivo or in vitro remains in doubt, and xanthine oxidase is an unsuitable source of O- 2 in platelet studies because of its own effects on platelets.


1997 ◽  
Vol 77 (05) ◽  
pp. 0975-0980 ◽  
Author(s):  
Angel Gálvez ◽  
Goretti Gómez-Ortiz ◽  
Maribel Díaz-Ricart ◽  
Ginés Escolar ◽  
Rogelio González-Sarmiento ◽  
...  

SummaryThe effect of desmopressin (DDAVP) on thrombogenicity, expression of tissue factor and procoagulant activity (PCA) of extracellular matrix (ECM) generated by human umbilical vein endothelial cells cultures (HUVEC), was studied under different experimental conditions. HUVEC were incubated with DDAVP (1, 5 and 30 ng/ml) and then detached from their ECM. The reactivity towards platelets of this ECM was tested in a perfusion system. Coverslips covered with DD A VP-treated ECMs were inserted in a parallel-plate chamber and exposed to normal blood anticoagulated with low molecular weight heparin (Fragmin®, 20 U/ml). Perfusions were run for 5 min at a shear rate of 800 s1. Deposition of platelets on ECMs was significantly increased with respect to control ECMs when DDAVP was used at 5 and 30 ng/ml (p <0.05 and p <0.01 respectively). The increase in platelet deposition was prevented by incubation of ECMs with an antibody against human tissue factor prior to perfusion. Immunofluorescence studies positively detected tissue factor antigen on DDAVP derived ECMs. A chromogenic assay performed under standardized conditions revealed a statistically significant increase in the procoagulant activity of the ECMs produced by ECs incubated with 30 ng/ml DDAVP (p <0.01 vs. control samples). Northern blot analysis revealed increased levels of tissue factor mRNA in extracts from ECs exposed to DDAVP. Our data indicate that DDAVP in vitro enhances platelet adhesion to the ECMs through increased expression of tissue factor. A similar increase in the expression of tissue factor might contribute to the in vivo hemostatic effect of DDAVP.


2019 ◽  
Vol 26 (5) ◽  
pp. 339-347 ◽  
Author(s):  
Dilani G. Gamage ◽  
Ajith Gunaratne ◽  
Gopal R. Periyannan ◽  
Timothy G. Russell

Background: The dipeptide composition-based Instability Index (II) is one of the protein primary structure-dependent methods available for in vivo protein stability predictions. As per this method, proteins with II value below 40 are stable proteins. Intracellular protein stability principles guided the original development of the II method. However, the use of the II method for in vitro protein stability predictions raises questions about the validity of applying the II method under experimental conditions that are different from the in vivo setting. Objective: The aim of this study is to experimentally test the validity of the use of II as an in vitro protein stability predictor. Methods: A representative protein CCM (CCM - Caulobacter crescentus metalloprotein) that rapidly degrades under in vitro conditions was used to probe the dipeptide sequence-dependent degradation properties of CCM by generating CCM mutants to represent stable and unstable II values. A comparative degradation analysis was carried out under in vitro conditions using wildtype CCM, CCM mutants and two other candidate proteins: metallo-β-lactamase L1 and α -S1- casein representing stable, borderline stable/unstable, and unstable proteins as per the II predictions. The effect of temperature and a protein stabilizing agent on CCM degradation was also tested. Results: Data support the dipeptide composition-dependent protein stability/instability in wt-CCM and mutants as predicted by the II method under in vitro conditions. However, the II failed to accurately represent the stability of other tested proteins. Data indicate the influence of protein environmental factors on the autoproteolysis of proteins. Conclusion: Broader application of the II method for the prediction of protein stability under in vitro conditions is questionable as the stability of the protein may be dependent not only on the intrinsic nature of the protein but also on the conditions of the protein milieu.


2011 ◽  
Vol 8 (4) ◽  
pp. 392-397 ◽  
Author(s):  
Boontarika Boonyapiwat ◽  
Narong Sarisuta ◽  
Sarinnate Kunastitchai

2018 ◽  
Vol 15 (9) ◽  
pp. 1305-1311 ◽  
Author(s):  
Giovanni Monastra ◽  
Yula Sambuy ◽  
Simonetta Ferruzza ◽  
Daniela Ferrari ◽  
Giulia Ranaldi

2019 ◽  
Vol 18 (26) ◽  
pp. 2209-2229 ◽  
Author(s):  
Hai Pham-The ◽  
Miguel Á. Cabrera-Pérez ◽  
Nguyen-Hai Nam ◽  
Juan A. Castillo-Garit ◽  
Bakhtiyor Rasulev ◽  
...  

One of the main goals of in silico Caco-2 cell permeability models is to identify those drug substances with high intestinal absorption in human (HIA). For more than a decade, several in silico Caco-2 models have been made, applying a wide range of modeling techniques; nevertheless, their capacity for intestinal absorption extrapolation is still doubtful. There are three main problems related to the modest capacity of obtained models, including the existence of inter- and/or intra-laboratory variability of recollected data, the influence of the metabolism mechanism, and the inconsistent in vitro-in vivo correlation (IVIVC) of Caco-2 cell permeability. This review paper intends to sum up the recent advances and limitations of current modeling approaches, and revealed some possible solutions to improve the applicability of in silico Caco-2 permeability models for absorption property profiling, taking into account the above-mentioned issues.


Sign in / Sign up

Export Citation Format

Share Document