Mycophenolate Mofetil but Not the Type of Calcineurin Inhibitor (Cyclosporine vs Tacrolimus) Influences the Intragraft mRNA Expression of Cytokines in Human Kidney Allograft Biopsies by In Situ RT-PCR Analysis

2005 ◽  
Vol 37 (2) ◽  
pp. 770-772 ◽  
Author(s):  
D. Kaminska ◽  
B. Tyran ◽  
O. Mazanowska ◽  
W. Letachowicz ◽  
A. Kochman ◽  
...  
2005 ◽  
Vol 37 (2) ◽  
pp. 767-769 ◽  
Author(s):  
D. Kaminska ◽  
B. Tyran ◽  
O. Mazanowska ◽  
W. Letachowicz ◽  
A. Kochman ◽  
...  

2004 ◽  
Vol 78 ◽  
pp. 551
Author(s):  
D Kamińska ◽  
B Tyran ◽  
O Mazanowska ◽  
W Letachowicz ◽  
A Kochman ◽  
...  

2004 ◽  
Vol 18 (6) ◽  
pp. 1450-1460 ◽  
Author(s):  
Roland Rabeler ◽  
Jens Mittag ◽  
Lars Geffers ◽  
Ulrich Rüther ◽  
Michael Leitges ◽  
...  

Abstract To provide an animal model of central hypothyroidism, mice deficient in the TRH-receptor 1 (TRH-R1) gene were generated by homologous recombination. The pituitaries of TRH-R1−/− mice are devoid of any TRH-binding capacity, demonstrating that TRH-R1 is the only receptor localized on TRH target cells of the pituitary. With the exception of some retardation in growth rate, TRH-R1−/− mice appear normal, but compared with control animals they exhibit a considerable decrease in serum T3, T4, and prolactin (PRL) levels but not in serum TSH levels. In situ hybridization histochemistry and real-time RT-PCR analysis revealed that in adult TRH-R1−/− animals TSHβ-mRNA expression is not impaired whereas PRL mRNA and GH mRNA levels are considerably reduced compared with control mice. The numbers of thyrotropes, somatotropes, and lactotropes, however, are not affected by the deletion of the TRH-R1 gene. The mutant mice are fertile, and the dams nourish their pups well, indicating that TRH is not a decisive factor for suckling-induced PRL release. In situ hybridization and quantitative RT-PCR analysis, furthermore, revealed that, as in control animals, pituitary PRL-mRNA expression in TRH-R1−/− is considerably increased during lactation, albeit strongly reduced as compared with lactating control animals.


2000 ◽  
Vol 118 (4) ◽  
pp. A1469
Author(s):  
Dirk Michels ◽  
Christian I. Haberkorn ◽  
Burkhard Arndt ◽  
Michael P. Manns

1995 ◽  
Vol 269 (3) ◽  
pp. F449-F457 ◽  
Author(s):  
L. H. Chow ◽  
S. Subramanian ◽  
G. J. Nuovo ◽  
F. Miller ◽  
E. P. Nord

Three subtypes of endothelin (ET) receptors have been identified by cDNA cloning, namely ET-RA, ET-RB, and ET-RC. In the current study the precise cellular distribution of the ET receptor subtypes in the renal medulla was explored by detecting the corresponding polymerase chain reaction (PCR)-amplified cDNAs by in situ reverse transcription (RT)-PCR. The PCR-amplified cDNAs were detected either by direct incorporation using digoxigenin-dUTP (dig-dUTP) as a nucleotide substrate in the PCR reaction or by in situ hybridization with the dig-dUTP-labeled probe. ET-RB mRNA was detected exclusively in the epithelial cells of the inner and outer medullary collecting duct. In contrast, ET-RA message was observed primarily in interstitial cells and pericytes of the vasae rectae in the outer and inner medulla. Southern blot analysis of PCR-amplified cDNAs reverse transcribed from extracted RNA of rat renal medulla confirmed the specificity of the RT-PCR products. ET-RC mRNA was not detected. We conclude that ET-RB is the major ET receptor found in rat renal medulla and is expressed exclusively on inner medullary collecting duct cells. The pattern of ET receptor mRNA expression described suggests different physiological actions for ET on the diverse cellular structures of the renal medulla.


Development ◽  
1999 ◽  
Vol 126 (20) ◽  
pp. 4405-4419 ◽  
Author(s):  
R. Ruiz-Medrano ◽  
B. Xoconostle-Cazares ◽  
W.J. Lucas

Direct support for the concept that RNA molecules circulate throughout the plant, via the phloem, is provided through the characterisation of mRNA from phloem sap of mature pumpkin (Cucurbita maxima) leaves and stems. One of these mRNAs, CmNACP, is a member of the NAC domain gene family, some of whose members have been shown to be involved in apical meristem development. In situ RT-PCR analysis revealed the presence of CmNACP RNA in the companion cell-sieve element complex of leaf, stem and root phloem. Longitudinal and transverse sections showed continuity of transcript distribution between meristems and sieve elements of the protophloem, suggesting CmNACP mRNA transport over long distances and accumulation in vegetative, root and floral meristems. In situ hybridization studies conducted on CmNACP confirmed the results obtained using in situ RT-PCR. Phloem transport of CmNACP mRNA was proved directly by heterograft studies between pumpkin and cucumber plants, in which CmNACP transcripts were shown to accumulate in cucumber scion phloem and apical tissues. Similar experiments were conducted with 7 additional phloem-related transcripts. Collectively, these studies established the existence of a system for the delivery of specific mRNA transcripts from the body of the plant to the shoot apex. These findings provide insight into the presence of a novel mechanism likely used by higher plants to integrate developmental and physiological processes on a whole-plant basis.


Sign in / Sign up

Export Citation Format

Share Document