Convolutional neural networks with refined loss functions for the real-time crash risk analysis

2020 ◽  
Vol 119 ◽  
pp. 102740 ◽  
Author(s):  
Rongjie Yu ◽  
Yiyun Wang ◽  
Zihang Zou ◽  
Liqiang Wang
Author(s):  
Alexander Schmidt ◽  
Florian Schellroth ◽  
Marc Fischer ◽  
Lukas Allimant ◽  
Oliver Riedel

AbstractReinforcement learning is a promising approach for manufacturing processes. Process knowledge can be gained automatically, and autonomous tuning of control is possible. However, the use of reinforcement learning in a production environment imposes specific requirements that must be met for a successful application. This article defines those requirements and evaluates three reinforcement learning methods to explore their applicability. The results show that convolutional neural networks are computationally heavy and violate the real-time execution requirements. A new architecture is presented and validated that allows using GPU-based hardware acceleration while meeting the real-time execution requirements.


Author(s):  
Muhammad Hanif Ahmad Nizar ◽  
Chow Khuen Chan ◽  
Azira Khalil ◽  
Ahmad Khairuddin Mohamed Yusof ◽  
Khin Wee Lai

Background: Valvular heart disease is a serious disease leading to mortality and increasing medical care cost. The aortic valve is the most common valve affected by this disease. Doctors rely on echocardiogram for diagnosing and evaluating valvular heart disease. However, the images from echocardiogram are poor in comparison to Computerized Tomography and Magnetic Resonance Imaging scan. This study proposes the development of Convolutional Neural Networks (CNN) that can function optimally during a live echocardiographic examination for detection of the aortic valve. An automated detection system in an echocardiogram will improve the accuracy of medical diagnosis and can provide further medical analysis from the resulting detection. Methods: Two detection architectures, Single Shot Multibox Detector (SSD) and Faster Regional based Convolutional Neural Network (R-CNN) with various feature extractors were trained on echocardiography images from 33 patients. Thereafter, the models were tested on 10 echocardiography videos. Results: Faster R-CNN Inception v2 had shown the highest accuracy (98.6%) followed closely by SSD Mobilenet v2. In terms of speed, SSD Mobilenet v2 resulted in a loss of 46.81% in framesper- second (fps) during real-time detection but managed to perform better than the other neural network models. Additionally, SSD Mobilenet v2 used the least amount of Graphic Processing Unit (GPU) but the Central Processing Unit (CPU) usage was relatively similar throughout all models. Conclusion: Our findings provide a foundation for implementing a convolutional detection system to echocardiography for medical purposes.


Author(s):  
Biluo Shen ◽  
Zhe Zhang ◽  
Xiaojing Shi ◽  
Caiguang Cao ◽  
Zeyu Zhang ◽  
...  

Abstract Purpose Surgery is the predominant treatment modality of human glioma but suffers difficulty on clearly identifying tumor boundaries in clinic. Conventional practice involves neurosurgeon’s visual evaluation and intraoperative histological examination of dissected tissues using frozen section, which is time-consuming and complex. The aim of this study was to develop fluorescent imaging coupled with artificial intelligence technique to quickly and accurately determine glioma in real-time during surgery. Methods Glioma patients (N = 23) were enrolled and injected with indocyanine green for fluorescence image–guided surgery. Tissue samples (N = 1874) were harvested from surgery of these patients, and the second near-infrared window (NIR-II, 1000–1700 nm) fluorescence images were obtained. Deep convolutional neural networks (CNNs) combined with NIR-II fluorescence imaging (named as FL-CNN) were explored to automatically provide pathological diagnosis of glioma in situ in real-time during patient surgery. The pathological examination results were used as the gold standard. Results The developed FL-CNN achieved the area under the curve (AUC) of 0.945. Comparing to neurosurgeons’ judgment, with the same level of specificity >80%, FL-CNN achieved a much higher sensitivity (93.8% versus 82.0%, P < 0.001) with zero time overhead. Further experiments demonstrated that FL-CNN corrected >70% of the errors made by neurosurgeons. FL-CNN was also able to rapidly predict grade and Ki-67 level (AUC 0.810 and 0.625) of tumor specimens intraoperatively. Conclusion Our study demonstrates that deep CNNs are better at capturing important information from fluorescence images than surgeons’ evaluation during patient surgery. FL-CNN is highly promising to provide pathological diagnosis intraoperatively and assist neurosurgeons to obtain maximum resection safely. Trial registration ChiCTR ChiCTR2000029402. Registered 29 January 2020, retrospectively registered


2021 ◽  
Vol 11 (1) ◽  
pp. 377
Author(s):  
Michele Scarpiniti ◽  
Enzo Baccarelli ◽  
Alireza Momenzadeh ◽  
Sima Sarv Ahrabi

The recent introduction of the so-called Conditional Neural Networks (CDNNs) with multiple early exits, executed atop virtualized multi-tier Fog platforms, makes feasible the real-time and energy-efficient execution of analytics required by future Internet applications. However, until now, toolkits for the evaluation of energy-vs.-delay performance of the inference phase of CDNNs executed on such platforms, have not been available. Motivated by these considerations, in this contribution, we present DeepFogSim. It is a MATLAB-supported software toolbox aiming at testing the performance of virtualized technological platforms for the real-time distributed execution of the inference phase of CDNNs with early exits under IoT realms. The main peculiar features of the proposed DeepFogSim toolbox are that: (i) it allows the joint dynamic energy-aware optimization of the Fog-hosted computing-networking resources under hard constraints on the tolerated inference delays; (ii) it allows the repeatable and customizable simulation of the resulting energy-delay performance of the overall Fog execution platform; (iii) it allows the dynamic tracking of the performed resource allocation under time-varying operating conditions and/or failure events; and (iv) it is equipped with a user-friendly Graphic User Interface (GUI) that supports a number of graphic formats for data rendering. Some numerical results give evidence for about the actual capabilities of the proposed DeepFogSim toolbox.


2018 ◽  
Vol 114 ◽  
pp. 4-11 ◽  
Author(s):  
Yina Wu ◽  
Mohamed Abdel-Aty ◽  
Jaeyoung Lee

Sign in / Sign up

Export Citation Format

Share Document