Mixed elastohydrodynamic lubrication analysis of line contact with Non-Gaussian surface roughness

2020 ◽  
Vol 151 ◽  
pp. 106449 ◽  
Author(s):  
Jiaxing Pei ◽  
Xu Han ◽  
Yourui Tao ◽  
Shizhe Feng
2015 ◽  
Vol 137 (4) ◽  
Author(s):  
Tao He ◽  
Jiaxu Wang ◽  
Zhanjiang Wang ◽  
Dong Zhu

Line contact is common in many machine components, such as various gears, roller and needle bearings, and cams and followers. Traditionally, line contact is modeled as a two-dimensional (2D) problem when the surfaces are assumed to be smooth or treated stochastically. In reality, however, surface roughness is usually three-dimensional (3D) in nature, so that a 3D model is needed when analyzing contact and lubrication deterministically. Moreover, contact length is often finite, and realistic geometry may possibly include a crowning in the axial direction and round corners or chamfers at two ends. In the present study, plasto-elastohydrodynamic lubrication (PEHL) simulations for line contacts of both infinite and finite length have been conducted, taking into account the effects of surface roughness and possible plastic deformation, with a 3D model that is needed when taking into account the realistic contact geometry and the 3D surface topography. With this newly developed PEHL model, numerical cases are analyzed in order to reveal the PEHL characteristics in different types of line contact.


Author(s):  
Kirat Shah ◽  
Robert E. Johnson ◽  
Harish P. Cherukuri

Measurements of surface roughness on hydrostatic bearing slipper indicate that the surfaces are not always Gaussian. Previous studies in this area were primarily concerned with Gaussian surfaces. In this research the effects of non-Gaussian surface roughness on the performance of profiled hydrostatic thrust bearings are analyzed. This study is applicable to the lubrication conditions where the surface roughness is of the same order of magnitude as the minimum film thickness. Surfaces with different skewness, kurtosis, mean, auto-correlation function and standard deviation are generated numerically using a combination of Fast Fourier Transform (FFT) and Johnson translatory system. The finite difference method is used to solve the Reynolds lubrication equation. The effect of roughness on the load carrying capacity is investigated and compared with the results for ideal smooth surfaces.


Author(s):  
M Ho ◽  
D. J. Birch ◽  
P. J. Brunn

Impulsive vibrations generated during the operation of a rolling Hertzian line contact under elastohydrodynamic lubrication (EHL) conditions, typically found in tapered rolling bearings, are analysed using two-dimensional surface roughness profiles containing spherical asperities. The cause of these vibrations is modelled as a series of collisions between the asperities forming the surfaces in contact. Asperity heights are considered to vary according to a Gaussian distribution, and an innovative method, based upon probability, is developed so that the rates and the magnitudes of collisions between asperities of various heights under different lubrication conditions can be studied. The magnitude of individual collisions are predicted to allow them to be compared with those measured using a calibrated master piezoelectric transducer.


2012 ◽  
Vol 134 (1) ◽  
Author(s):  
M. Masjedi ◽  
M. M. Khonsari

Three formulas are derived for predicting the central and the minimum film thickness as well as the asperity load ratio in line-contact EHL with provision for surface roughness. These expressions are based on the simultaneous solution to the modified Reynolds equation and surface deformation with consideration of elastic, plastic and elasto-plastic deformation of the surface asperities. The formulas cover a wide range of input and they are of the form f(W, U, G, σ¯, V), where the parameters represented are dimensionless load, speed, material, surface roughness and hardness, respectively.


Author(s):  
V. D’Agostino ◽  
V. Petrone ◽  
A. Senatore

A numerical solution of elastohydrodynamic lubrication (EHL) contact between two rough surface cylinders is presented. In the theoretical approach the free-volume viscosity model is used to describe the piezo-viscous behavior of the lubricant in a Newtonian Elastohydrodynamic line contact [1,2]. Random rough surfaces with Gaussian and exponential statistics have been generated using a method outlined by Garcia and Stoll [3], where an uncorrelated distribution of surface points using a random number generator is convolved with a Gaussian filter to achieve correlation. This convolution is most efficiently performed using the discrete Fast Fourier Transform (FFT) algorithm, which in MATLAB is based on the FFTW library [4]. The maximum pressure and average film thickness are studied at different values of RMS, skewness, kurtosis, autocorrelation function and correlation length. Numerical examples show that skewness and kurtosis have a great effect on the parameters of EHD lubrication. Surface roughness, indeed, tends to reduce the minimum film thickness and it produces pressure fluctuations inside the conjunction which tend to increase the maximum stress. In this way the dynamic stress increases and tends to reduce the fatigue life of the components. It can be seen that the pressures developed in the fluid film in the case of rough surfaces fluctuate with the same frequency of the surface roughness. These pressure ripples correspond to the asperity peaks. This indicates that surface roughness causes very high local contact pressures which may lead to local thinning of the film. A significant reduction has been also observed in the minimum film thickness due to surface roughness.


2012 ◽  
Vol 134 (1) ◽  
Author(s):  
Simon Medina ◽  
Andrew V. Olver ◽  
Daniele Dini

The influence of non-Gaussian surface roughness on elastic contacts loaded in both normal and tangential directions has been investigated. A numerical solution method based on the multilevel scheme and incorporating the theorem of Ciavarella/Jaeger has been implemented, which allows fast calculation of partial slip loading conditions, including the energy dissipation for a fully reversed tangential loading cycle. The effect of varying roughness rms, skewness, kurtosis, and correlation lengths on contact areas, stiffness values, and energy dissipation is presented, and the significance of these parameters and of the loading method are discussed. It was found that the energy dissipation can be greatly increased by greater surface roughness. Maps showing how the energy dissipation is distributed within the contact are presented, which provide some explanation for this observation and the scatter that may occur for surfaces of nominally similar roughness. The suitability of these parameters for predicting the contact behavior of rough surfaces is also considered.


Author(s):  
Mongkol Mongkolwongrojn ◽  
Khanittha Wongseedakaew ◽  
Francis E. Kennedy

This paper presents the analysis of elastohydrodynamic lubrication (EHL) of two parallel cylinders in line contact with non-Newtonian fluids under oscillatory motion. The effects of transverse harmonic surface roughness are also investigated in the numerical simulation. The time-dependent Reynolds equation uses a power law model for viscosity. The simultaneous system of modified Reynolds equation and elasticity equation with initial conditions was solved using multi-grid multi-level method with full approximation technique. Film thickness and pressure profiles were determined for smooth and rough surfaces in the oscillatory EHL conjunctions, and the film thickness predictions were verified experimentally. For an increase in the applied load on the cylinders, the minimum film thickness calculated numerically becomes smaller. The predicted film thickness is slightly higher than the film thickness obtained experimentally, owing to cavitation that occurred in the experiments. For both hard and soft EHL contacts, the minimum film thickness under oscillatory motion is very thin near the trailing edge of the contact, especially for stiffer surfaces. The surface roughness and power law index of the non-Newtonian lubricant both have significant effects on the film thickness and pressure profile between the cylinders under oscillatory motion.


Sign in / Sign up

Export Citation Format

Share Document