Bone marrow and adipose tissue derived mesenchymal stromal cells have similar immunosuppressive capacities in vitro and in a humanized allograft rejection model

2014 ◽  
Vol 31 (4) ◽  
pp. 246 ◽  
Author(s):  
M. Roemeling-van Rhijn ◽  
M. Khairoun ◽  
S.S. Korevaar ◽  
E. Lievers ◽  
D.L. Leuning ◽  
...  
2010 ◽  
Vol 4 (2) ◽  
pp. 117-127 ◽  
Author(s):  
A. Yu. Efimenko ◽  
E. E. Starostina ◽  
K. A. Rubina ◽  
N. I. Kalinina ◽  
E. V. Parfenova

2017 ◽  
Vol 5 (2) ◽  
pp. 194-199
Author(s):  
A. Rodnichenko

Multipotent mesenchymal stromal cells (MMSCs) are used for cell therapy of lesions of various genesis. The most widely used MMSCs are from two tissue sources: bone marrow and adipose tissue.The purpose of the work was to conduct a comparative assessment of the biological properties of murine bone marrow-derived and adipose tissue-derived MMSCs.Methods. The culture of MMSCs was obtained from the bone marrow and adipose tissue of 6 months-old male FVB/N mice according to standard protocols. We performed phenotyping, directed osteogenic and adipogenic differentiation, analysis of immunomodulatory properties in vitro of obtained cell cultures.Results. The cultured MMSCs from bone marrow and adipose tissue express the typical stromal markers (CD44, CD73, CD90 and Sca-1). A distinctive feature of bone marrow cells cultures of the 2nd passage was the high level of the hematopoietic markers CD45 and CD117 expression. MMSCs from both tissue sources are capable of differentiation in the osteogenic and adipogenic directions. At the same time, there were differences in the differentiation in the osteogenic direction – adipose tissue-derived MMSCs had a lower osteogenic potential. MMSCs exhibit inhibitory effect on mitogen-induced proliferation of splenocytes in vitro, expression of which does not depend on tissue origin of the MMSCs with significant inhibition of mitogen-induced proliferation of splenocytes at addition of high doses of MMSCs.Conclusions. MMSCs of bone marrow and adipose tissue express a similar level of surface markers that are characteristic of cells with multipotent properties. They are capable to differentiating in osteo- and adipogenic direction with differences in the degree of mineralization of the extracellular matrix and exhibit immunomodulatory effects in vitro, regardless of tissue origin.


2020 ◽  
Vol 10 (4) ◽  
pp. 261
Author(s):  
Shanti Gurung ◽  
Daniela Ulrich ◽  
Marian Sturm ◽  
Anna Rosamilia ◽  
Jerome A. Werkmeister ◽  
...  

Rare perivascular mesenchymal stromal cells (MSCs) with therapeutic properties have been identified in many tissues. Their rarity necessitates extensive in vitro expansion, resulting in spontaneous differentiation, cellular senescence and apoptosis, producing therapeutic products with variable quality and decreased potency. We previously demonstrated that A83-01, a transforming growth factor beta (TGF-β) receptor inhibitor, maintained clonogenicity and promoted the potency of culture-expanded premenopausal endometrial MSCs using functional assays and whole-transcriptome sequencing. Here, we compared the effects of A83-01 on MSCs derived from postmenopausal endometrium, menstrual blood, placenta decidua-basalis, bone marrow and adipose tissue. Sushi-domain-containing-2 (SUSD2+) and CD34+CD31−CD45− MSCs were isolated. Expanded MSCs were cultured with or without A83-01 for 7 days and assessed for MSC properties. SUSD2 identified perivascular cells in the placental decidua-basalis, and their maternal origin was validated. A83-01 promoted MSC proliferation from all sources except bone marrow and only increased SUSD2 expression and prevented apoptosis in MSCs from endometrial-derived tissues. A83-01 only improved the cloning efficiency of postmenopausal endometrial MSCs (eMSCs), and expanded adipose tissue MSCs (adMSCs) underwent significant senescence, which was mitigated by A83-01. MSCs derived from bone marrow (bmMSCs) were highly apoptotic, but A83-01 was without effect. A83-01 maintained the function and phenotype in MSCs cultured from endometrial, but not other, tissues. Our results also demonstrated that cellular SUSD2 expression directly correlates with the functional phenotype.


2015 ◽  
Vol 1 (2) ◽  
pp. 12 ◽  
Author(s):  
Sabrina Ena ◽  
Julia Ino ◽  
Aurelie Neirinck ◽  
Sandra Pietri ◽  
Anna Tury ◽  
...  

Over the last decade, there has been an increasing interest among researchers for human mesenchymal stromal cells (MSC). Their regenerative properties, multilineage differentiation capacity and immunomodulatory properties make them promising candidates for treatment in various conditions. Emerging biotechnology companies specialized in cellular and regenerative therapies have been focusing their interest on MSC-based therapies, and their use in clinical trials has steadily increased. Notably, MSC are currently tested in clinical trials addressing unmet medical needs in the field of bone fracture repair and more specifically in non-union and delayed union fractures where the bone repair process is impaired. Although MSC can be isolated from various tissues, the most commonly studied sources are bone marrow (BM) and adipose tissue (Ad). In this article, we reviewed the literature directly comparing BM- and Ad-MSC for their in vitro characteristics and in vivo osteogenic potential to determine which source of MSC would be more appropriate for bone fracture repair. As considerable variations in experimental settings between studies were found, our review was based on studies meeting specific sets of criteria, notably regarding donors’ age and gender. This review of side-by-side comparisons suggests that while BM-and Ad-MSC share common general characteristics, BM-MSC have a higher intrinsic osteogenic capacity in vitro and bone repair potential in vivo.


Heliyon ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. e06517
Author(s):  
Lyudmila M. Mezhevikina ◽  
Dmitriy A. Reshetnikov ◽  
Maria G. Fomkina ◽  
Nurbol O. Appazov ◽  
Saltanat Zh. Ibadullayeva ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 403
Author(s):  
Girolamo Di Maio ◽  
Nicola Alessio ◽  
Ibrahim Halil Demirsoy ◽  
Gianfranco Peluso ◽  
Silverio Perrotta ◽  
...  

Brown-like adipocytes can be induced in white fat depots by a different environmental or drug stimuli, known as “browning” or “beiging”. These brite adipocytes express thermogenin UCP1 protein and show different metabolic advantages, such as the ability to acquire a thermogenic phenotype corresponding to standard brown adipocytes that counteracts obesity. In this research, we evaluated the effects of several browning agents during white adipocyte differentiation of bone marrow-derived mesenchymal stromal cells (MSCs). Our in vitro findings identified two compounds that may warrant further in vivo investigation as possible anti-obesity drugs. We found that rosiglitazone and sildenafil are the most promising drug candidates for a browning treatment of obesity. These drugs are already available on the market for treating diabetes and erectile dysfunction, respectively. Thus, their off-label use may be contemplated, but it must be emphasized that some severe side effects are associated with use of these drugs.


Sign in / Sign up

Export Citation Format

Share Document